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Abstract

The classical Erdős-Turán inequality on the distribution of roots for complex polynomials can be

equivalently stated in a potential theoretic formulation, that is, if the logarithmic potential generated by

a probability measure on the unit circle is close to 0, then this probability measure is close to the uniform

distribution. We generalize this classical inequality from d “ 1 to higher dimensions d ą 1 with the class

of Riesz potentials which includes the logarithmic potential as a special case. In order to quantify how

close a probability measure is to the uniform distribution in a general space, we use Wasserstein-infinity

distance as a canonical extension of the concept of discrepancy. Then we give a compact description

of this distance. Then for every dimension d, we prove inequalities bounding the Wasserstein-infinity

distance between a probability measure ρ and the uniform distribution by the Lp-norm of the Riesz

potentials generated by ρ. Our inequalities are proven to be sharp up to the constants for singular Riesz

potentials. Our results indicate that the phenomenon discovered by Erdős and Turán about polynomials

is much more universal than it seems. Finally we apply these inequalities to prove stability theorems for

energy minimizers, which provides a complementary perspective on the recent construction of energy

minimizers with clustering behavior.

Keywords. Erdős-Turán inequality, energy minimization, Wasserstein distance, discrepancy,

potential theory, stability

1. Introduction

1.1. Main Theorem. In 1950, Erdős and Turán [ET50] prove a classical inequality on the

distribution of roots of a complex polynomial fpzq P Crzs. The inequality characterizes the

phenomenon that if fpzq attains small value on the unit circle, then the angular distribution of

the roots of fpzq is close to equidistribution. Let fpzq “
řn
k“0 akz

k P Crzs be a polynomial where

a0an ‰ 0 and denote its roots by rje
2πiθj for 1 ď j ď n with θj P T “ R{Z. For α ď β ă α` 1,

we write Nf pα, βq to be the number of roots with θj P rα, βs when considered as a subset in T.

We define for a polynomial f that

Drf s :“ max
αďβăα`1

Nf pα, βq

n
´ pβ ´ αq, Hrf s :“

1

n
log

max|z|“1 |fpzq|
a

|a0an|
, (1.1)

where Drf s is the discrepancy of f and measures the deviation of the angle distribution of roots

away from the uniform distribution on the unit circle, and Hrf s is the height of f . Then the

Erdős-Turán inequality states that there exists an absolute constant C such that

Drf s ď CHrf s1{2. (1.2)

In a recent work [SW], the authors prove that the optimal constant in (1.2) is C “
?

2.

One of the main ideas in [SW] is to consider inequality (1.2) for all probability measures in a

potential theoretic formulation. An observation due to Schur [Sch33] shows that to prove (1.2)

it suffices to consider polynomials f with all roots on the unit circle. Therefore by extending D
and H to all probability distributions as

Drρs “ sup
IĂT

ż

I

pρ´ 1qdx, Hrρs “ ´ ess infpWlog ˚ ρq, (1.3)

where the supreme is taken over closed intervals I of T and Wlogpxq “ ´ log |2 sinπx| for x P T,

the authors turn (1.2) from a discrete question to a continuous one. In potential theory, given
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an interaction potential W , we denote Vρ :“ W ˚ ρ to be the total potential generated by ρ

under the potential W . Then combining Schur’s observation, Erdős-Turán inequality can be

equivalently stated in the following potential theoretic formulation

Drρs ď
?

2 ¨ }pV r1Ts ´ V rρsq`}
1{2
L8 “

?
2 ¨ }p´W ˚ ρq`}

1{2
L8 , (1.4)

where the uniform distribution 1T is the unique probability distribution such that V r1Ts “ 0,

see [SW, Theorem 3.6] for an argument. Under this formulation, the inequality states that if the

total potential generated by ρ is close to the total potential generated by 1T, then ρ is also close

to 1T.

The original inequality (1.2) in [ET50] is stated in terms of polynomials since the motivation

of Erdős and Turán lies in number theory and complex analysis, however using the polynomial

formulation will force us to take the logarithmic potential. Via stating this inequality in terms

of the potential theoretic formulation, we eliminate this restriction and fit this question into a

much more general framework.

In this paper, we will generalize the Erdős-Turán inequality (1.4) in the following directions:

‚ Dimension: instead of only considering probability measures over T, we will consider

Td for general d.

‚ Potential: instead of only using the logarithmic potential Wlog “ ´ log |2 sinπx|, we

will consider the class of periodized Riesz potentials. For s ă d, the periodized Riesz

potential Ws is defined by

Ŵspkq “ |k|
´d`s, @0 ‰ k P Zd, Ŵ p0q “ 0. (1.5)

In fact Wlog “ ´ log |2 sinπx| is the special case of Ws with d “ 1, s “ 0.

‚ Height: instead of measuring W ˚ ρ by Hrρs which is close to an L8-norm of W ˚ ρ, we

measure W ˚ ρ by its Lp-norm.

A critical issue in generalizing this inequality to higher dimension is how to generalize

the notation of discrepancy in d “ 1. We adopt the view in [Gra20, Proposition 2] that the

discrepancy Drρs for d “ 1 is equivalent to the Wasserstein-infinity distance between ρ and the

uniform distribution 1T, that is,

1

2
Drρs “ d8pρ, 1Tq, for ρ PMpTq. (1.6)

We recall that for a locally compact topological space X with a distance function distp¨, ¨q, the

Wasserstein infinity distance between two probability measures ρ1, ρ2 on X is defined as

d8pρ1, ρ2q :“ inf
µPΠpρ1,ρ2q

sup
px,yqPsuppµ

distpx, yq, (1.7)

where Πpρ1, ρ2q is the set of transport plans from ρ1 to ρ2, i.e., those probability measures µpx, yq

on X ˆX with
ş

X
µpx, yqdy “ ρ1pxq and

ş

X
µpx, yqdx “ ρ2pyq. Therefore we can generalize the

notion of discrepancy in a canonical way as long as the underlying space X is locally compact

and equipped with a metric.

Theorem 1.1. Let s ă d, 1 ď p ă 8 and ρ PMpTdq.
(i) If 1 ď p ď d, then

d8pρ, 1q À }Ws ˚ ρ}
γ
Lp , γ “

1

d` d{p´ s
. (1.8)

(ii) If d “ 1, p ą 1, then

(a) If s ă 1
p , then (1.8) also holds.

(b) If s “ 1
p , then

d8pρ, 1qp1` | log d8pρ, 1q|q
´1`1{p À }Ws ˚ ρ}Lp . (1.9)
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(c) If 1
p ă s ă 1, then

d8pρ, 1q À }Ws ˚ ρ}Lp . (1.10)

(iii) (i) and (ii) are sharp up to the constants when 0 ă s ă d with the exception d “ 1 and

s “ 1{p.

Here the implied constants may depend on d, p, and s.

Remark 1.2. For d “ 1, [Gra20] shows that d8pρ, 1q “ }ρ ´ 1} 9W´1,8 is a negative Sobolev

norm, and the same is true for }Ws ˚ ρ}L2 “ }ρ ´ 1} 9H´1`s . Therefore, for the case p “ 2, one

can view (1.10) as a Sobolev embedding. However, in the case s ă 1{p “ 1{2, the inequality (1.8)

cannot be viewed in this way because the homogeneous degrees on its two sides are different. In

other words, although }ρ´ 1}
3{2´s
9W´1,8

ď C}ρ´ 1} 9H´1`s is true for ρ PM, one does not expect the

same to be true if ρ´ 1 is replaced by a general mean-zero signed measure µ.

Remark 1.3. To see the optimality of the scalings in Theorem 1.1 for s ď 0, one would need a

better description of Ws near 0, similar to item 2 of Lemma 9.1 for the case 0 ă s ă d. This is

left as future work.

We now compare Theorem 1.1 with previous results in the literature. Our theorem includes

the case d “ 1, p “ 1 with Wlog as a special case, see previous work in [Mig92, Sou19, CDF`21].

In d “ 1, another alternative height being used before is energy see [Kle64, Hue01], and over T we

will show in Section 1.2 that the energy is essentially a L2-norm with certain Riesz potential. In

higher dimensions, our result is fundamentally different from previous results [Sjö72, G0̈0, Kle64,

Wag92] in that we use different generalization of discrepancy. In these works, a discrepancy in

the form of supreme of
ş

S
pρ´ 1qdx over certain test sets S was used, however, these results are

restricted in the sense that the inequality has a dependency on extra parameters from the choice

of S. We also mention [Wag92] on bounding the discrepancy in Wasserstein-1 distance and the

more recent work [Ste21] on bounding the discrepancy in other Wasserstein distances in d “ 1.

We close this section by the following remark: the fact that we are able to prove this

inequality in this generality shows that the phenomenon that what Erdős-Turán discovered

about polynomials actually holds in a much more universal way.

1.2. Application on Stability of Energy Minimizers. In this section, we will give an ap-

plication of Theorem 1.1 on study of energy minimization.

In potential theory, the probability measure(s) ρ that minimizes the potential energy

EW rρs :“
1

2

ż

X

pW ˚ ρq ¨ ρdx, (1.11)

on a certain space X with interaction potential W are called energy minimizers. Energy min-

imizers for the pairwise interaction energy EW on Rd have been studied extensively, in terms

of existence, uniqueness, and properties [BCLR13a, BCLR13b, CCP15, SST15, Lop19, CS21,

BCT18, BKS`15, CDM16, CFP17, KSUB11, ST21]. Following these results, a natural question

is the stability of energy minimizer. That is to say, in case there is a unique energy mini-

mizer ρ8, whether it is possible to estimate the distance between ρ P M and ρ8 in terms of

EW rρs ´ EW rρ8s.
A crucial observation we made is a connection between the energy EW and L2-norm of the

generated potential using Fourier transform. Over Td, the potential energy with the interaction

potential W is

EW rρs :“
1

2

ż

Td
pW ˚ ρq ¨ ρdx “

1

2

ÿ

kPZd
Ŵ pkq|ρpkq|2, (1.12)

where the last equality is justified in [SW, Appendix 2] when W is nice, see (H1) to (H3) below.

From the Fourier side EW rρs is actually equivalent to }W ˚ ρ}2L2 for another potential function

W when Ŵpkq2 “ Ŵ pkq, by applying Plancherel identity. This justifies our generalization to
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Riesz potentials, since even one starts with a logarithmic potential, its energy is exactly the

}W ˚ ρ}2L2 for some Riesz potential, moreover the class of Riesz potentials is closed under taking

square-root on the Fourier coefficients.

On the other hand, if the interaction potential satisfies Ŵ pkq ą 0 for k ‰ 0, then it is

clear from the expression on the Fourier side (1.12) that the uniform distribution ρ8 “ 1 is the

unique energy minimizer with the minimal energy EW rρ8s “ 0.

We now apply Theorem 1.1 to prove the stability of certain energy minimizers in the d8
sense based on the observations above. Let W : Td Ñ p´8,8s be an interaction potential

function satisfying the following assumptions:

‚ (H1) W is L1, even, lower-semicontinuous and bounded from below.

‚ (H2) Ŵ p0q “ 0, and Ŵ pkq ą 0 for any k P Zdzt0u.
‚ (H3) For some C1 ą 0, there holds 1

|Bpx;rq|

ş

Bpx;rq
pC1 `W pyqqdy ď CpC1 `W pxqq for

any r ą 0.

When W is a periodized Riesz potential Ws, Lemma 9.1 shows that Ws satisfies (H1)-(H3) for

any s ă d, and we denote the corresponding energy as Es.
Our goal is to get a stability estimate by controlling d8pρ, 1q in terms of EW rρs. We apply

(1.12) to Riesz potentials

Esrρs “
1

2

ÿ

kPZd
|k|´d`s|ρpkq|2 “

1

2

ÿ

kPZd

ˇ

ˇ|k|p´d`sq{2ρpkq
ˇ

ˇ

2
“

1

2
}Ws1 ˚ ρ}

2
L2 , (1.13)

with s1 “ d`s
2 . Also notice that if a potential W satisfies Ŵ p0q “ 0 and Ŵ pkq ě cŴspkq, then

EW rρs ě cEsrρs. Therefore, applying Theorem 1.1 with p “ 2 and s replaced by s1, we directly

get the following result on the stability of the uniform distribution as an energy minimizer, with

optimal scaling up to the possible logarithmic factor.

Theorem 1.4. Let s ă d and ρ PM. Let W be an interaction potential satisfying (H1)-(H3)

with a quantitative lower bound

Ŵ pkq ě c|k|´d`s, @0 ‰ k P Zd, Ŵ p0q “ 0. (1.14)

Then the associated energy EW rρs “ 1
2

ş

TdpW ˚ ρqρdx satisfies:

(i) If d ě 2, then

d8pρ, 1q À EW rρsγ , γ “
1

2d´ s
. (1.15)

(ii) If d “ 1, then

(a) If s ă 0, then (1.15) also holds.

(b) If s “ 0, then

d8pρ, 1qp1` | log d8pρ, 1q|q
´1{2 À EW rρs1{2. (1.16)

(c) If 0 ă s ă 1, then

d8pρ, 1q À EW rρs1{2. (1.17)

(iii) (i) and (ii) are sharp up to the constants when 0 ă s ă d with the exception d “ 1 and

s “ 1{p.

Remark 1.5. The counterpart of Es on R in the case s “ 0 was studied by [CFP12], in which

the wellposedness of the Wasserstein-2 gradient flow associated to this energy is proved. In the

presence of a quadratic attractive potential, [CFP12] also proves the exponential convergence to

the energy minimizer. This result implies a stability result of the form d2pρ, ρ8q ď CpErρs ´
Erρ8sq1{2, where ρ8 denotes the unique energy minimizer, and d2 denotes the Wasserstein-

2 distance. Since d2pρ1, ρ2q ď d8pρ1, ρ2q in any underlying space, our result (1.16) takes a

stronger form than the stability result implied by [CFP12], up to the logarithmic factor.
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Finally we give a result on the stability of energy minimizers with respect to the pertur-

bation on the potential W .

Theorem 1.6. Let W satisfy the assumption of Theorem 1.4, and W̃ is a perturbation of W ,

satisfying }W ´ W̃ }L8 ă 8. Then any minimizer ρ of the interaction energy EW̃ in M satisfies

the same conclusions as in Theorem 1.4 with EW rρs replaced by }W ´ W̃ }L8 .

We remark that the existence of minimizers for EW̃ can be guaranteed as long as W̃ satisfies

(H1), see Proposition 3.8 of [SW] for a treatment on T (which can be easily generalized to Td).

Proof. As a minimizer of EW̃ , ρ satisfies

EW̃ rρs ď EW̃ r1s “ EW r1s `
1

2

ż ż

pW̃ px´ yq ´W px´ yqqdy dx ď
1

2
}W ´ W̃ }L8 . (1.18)

Therefore

EW rρs “EW̃ rρs `
1

2

ż ż

pW px´ yq ´ W̃ px´ yqqρpyqdyρpxqdx

ď
1

2
}W ´ W̃ }L8 `

1

2
}W ´ W̃ }L8 “ }W ´ W̃ }L8 .

(1.19)

Then we get the conclusion by applying Theorem 1.4 to ρ. �

Although the proof is simple, Theorem 1.6 actually gives an interesting perspective on

energy minimizers. Indeed, even a small L8 perturbation on W may destroy the positivity

condition (H2) and result in complicated energy minimizer(s). However the energy minimizer(s)

under the perturbed potential will stay close to the original one in the sense of Wasserstein-

infinity distance. In fact, we will consider the following example, which uses a similar idea as

Sections 7 and 8 of [CS21]. We take W “Ws with s ă 0 and

W̃εpxq “W pxq ´ c0ε
´sψ

`x

ε

˘

, ε ą 0, x P Td “ r´1{2, 1{2qd. (1.20)

where ψ is a fixed compactly supported mollifier (i.e., ψ is nonnegative, radial, and
ş

Rd ψ dx “ 1),

and c0 ą 0 is a constant to be chosen. Then one has }W ´ W̃ε}L8 Ñ 0 as εÑ 0`. On the other

hand,

FrW̃εspkq “ |k|
´d`s ´ c0ε

´s`dψ̂pεkq, @0 ‰ k P Zd. (1.21)

where ψ̂ is the Fourier transform of ψ on Rd. Clearly ψ̂pξq is real and bounded from below by

1{2 in some ball ξ P Bp0;Rq, R ą 0. Therefore, for any k with R{p2εq ď |k| ď R{ε, we have

FrW̃εspkq ď
`R

2ε

˘´d`s
´ c0ε

´s`d ¨
1

2
“ ´

´1

2
c0 ´

`R

2

˘´d`s
¯

ε´s`d ă ´cε´s`d, (1.22)

if c0 ą 2pR2 q
´d`s. In this case, FrW̃εs always attains negative values for any ε ą 0, which implies

that the uniform distribution 1 is not a minimizer for EW̃ε
. Indeed, Lemma 7.3 and Remark 7.4

of [CS21] suggest that EW̃ε
is likely to have minimizers consisting of clusters of radius at most

Opεq. See Figure 1 for numerical evidence for this phenomenon.

Now we can see that Theorem 1.6 gives a control on how wild the minimizers of EW̃ε
could

be. Although complicated structure can form at a fine level, any minimizer of EW̃ε
have to

remain close to the uniform distribution in the sense of the d8 distance.

1.3. Method. In this section, we give a sketch of the proof for Theorem 1.1.
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Figure 1. Long time simulation of the particle gradient flow 9xi “

´ 1
N

ř

j‰i∇W pxi ´ xjq, N “ 1000. It (at least locally) minimizes the discrete

version of EW , namely, 1
2N2

ř

i‰jW pxi ´ xjq. We take d “ 2, s “ ´1. Top left:

W “ Ws. For the other three pictures, W is given by (1.21) with c0 “ 50 and

ψpxq “ e´1{p1´|x|2qχ|x|ď1. Top right: ε “ 0.05; Bottom left: ε “ 0.1; Bottom

right: ε “ 0.2.

1.3.1. Wasserstein distance. Our starting point is to give a convenient description for d8pρ1, ρ2q

in a general space so that we can use d8pρ, 1q in d ą 1 in place for the discrepancy Drρs in d “ 1

(1.3) . This description is inspired by the property of discrepancy in d “ 1.

For a given measurable set S Ď Td and r ą 0, we denote the expansion of S by r as

Sr “ tx P Td : distpx, Sq ă ru “
ď

xPS

Bpx; rq. (1.23)

Then we prove in Section 2 the following theorem.

Theorem 1.7. Let ρ1, ρ2 PM. Then

d8pρ1, ρ2q “ sup
!

r : DS Ď Td s.t.

ż

S

ρ1 dx ą

ż

Sr

ρ2 dx
)

. (1.24)

Recall that for the discrepancy Drρs in d “ 1, if I is an interval witnessing Drρs, then by

[Gra20] one has 2d8pρ, 1q “ Drρs “
ş

I
pρ ´ 1qdx “

ş

I
ρdx ´

ş

Id8pρ,1q
1 dx ` 2d8pρ, 1q, therefore

ş

I
ρdx “

ş

Id8pρ,1q
1 dx. This shows that I, serving as S in (1.24), is almost the S achieving the

supremum for d8pρ, 1q.
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S

Regr(S)

Sr

Figure 2. Illustration of Sr, the expansion of a set S, and the regularization

Reg rpSq. S is the region bounded by the innermost black curve. Reg rpSq,

which contains S, is bounded by the blue curve. Sr is the region bounded by

the outermost red curve.

In order to to prove this theorem, we first prove the case of discrete measures using graph

theory, namely, Hall’s Theorem on perfect matchings of bipartite graphs. Then we generalize it

to any probability measure by an approximation argument.

1.3.2. Fourier Analysis. With Theorem 1.7, now we can apply the method in [Sou19] using

Fourier analysis. When d “ 1, this method utilizes the interval I witnessing Drρs, and consider

a test function g “ ψr ˚ χIr which is a mollified version of χIr . The test function g captures

the discrepancy between ρ and the uniform distribution. Then the inequality in [Sou19] can be

obtained by estimating
ş

g ¨ pρ´ 1qdx from below by Drρs, and from above by }Wlog ˚ ρ}L1 .

In Section 3 we generalize the method of Fourier analysis in [Sou19] to higher dimensions.

To illustrate the idea, we denote 3r “ d8pρ, 1q, and a mollifier ψr supported in Bp0; rq. In the

spirit of the original method, one takes a test function g “ χSr ˚ψr, with S maximizing in (1.24).

g “ 1 on S while supp g Ď S2r. Such a test function enables us to detect the distance d8pρ, 1q

by giving a positive lower bound |S3rzS2r| for
ş

Td g ¨ pρ ´ 1qdx. Then, using standard Fourier

analysis, we give an upper bound of the same quantity in terms of }W ˚ρ}Lp and |Sr|. Here, |Sr|

can be bounded from above by |S2rzSr| via an isoperimetric inequality, see Lemma 3.1 where we

give an isoperimetric inequality on Td. We are now able to get an inequality involving |S3rzS2r|,

|S2rzSr| and }W ˚ ρ}Lp .

1.3.3. Regularization. Unlike in d “ 1 where S can be taken to be closed intervals, the geometry

for measurable subsets of Rd or Td will become much more complicated.

We notice that there is a mismatch between the layers |S3rzS2r| and |S2rzSr|, which could

bring huge error if S is complicated. Generally specking, |S2rzSr| could be much larger than

|S3rzS2r|. We overcome this difficulty by refining the choice of the test function. In fact, we

apply a regularization procedure to the set Sr which will be used to define the test function g

(c.f. (3.4)) and play a subtle role in the proof of Theorem 1.1 in Section 3. We denote Scr to be

the complement of Sr, where Sr is defined in (1.23).

Definition 1.8. For S Ď Td and r ą 0, define the r-regularization of S as Reg rpSq “ pS
c
rq
c
r.
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See Figure 2 as an illustration. See Appendix 8 for more properties of regularization which

are not used in Section 3.

This operation removes all possible fine structures of Sr at the scale r, and enables us to

compare the expanded layers of the regularized Sr.

For d “ 1 case of Theorem 1.1, in Section 4 we utilize the fact that S can be taken as an

interval, and conduct a slightly different way of bounding
ş

T g ¨ pρ´ 1qdx from above to treat a

wider range of p.

Finally, for Theorem 5.1, in Section 5 we construct an explicit class of measures ρ in (5.8),

whose d8pρ, 1q is clear, and the corresponding }Ws ˚ ρ}Lp can be estimated by using the explicit

structure given in Lemma 9.1.

1.4. Notations. Throughout the paper, we denote d to be the dimension, and Td “ pR{Zqd

to be the dimension d torus. We denote MpTdq to be the set of probability measures on Td.
When there is no confusion, we will suppress Td and just write M. We will denote 1Td to be

the uniform distribution.

For d “ 1, we denote Wlogpxq :“ ´ log |2 sinπx| to be the logarithmic potential. For s ă d,

we denote the Riesz potential by Wspxq, which is defined by Ŵspkq “ |k|
´d`s for all k ‰ 0 and

Ŵsp0q “ 0. For ρ PMpTdq, we define VW rρs :“ W ˚ ρ to be the potential generated by ρ with

the interaction potential W , and EW rρs :“ 1
2

ş

TdpW ˚ ρq ¨ ρdx to be the potential energy of ρ.

Given ρ1, ρ2 PMpTdq, we denote the Wasserstein-infinity distance between them by d8pρ1, ρ2q.

For ρ PMpTq, we denote Drρs :“ supI
ş

I
pρ´1qdx to be the discrepancy of ρ, where the supreme

is taken over all closed intervals in T, and Hrρs :“ }p´Wlog ˚ ρq`}L8 to be the height of ρ.

We denote the homogeneous Sobolev norm by } ¨ } 9Wk,p and } ¨ } 9Hk when p “ 2. For us, the

Fourier transform (respectively Fourier coefficients) of u is defined by

Fruspξq “ ûpξq “

ż

Rd
upxqe´2πiξ¨x dx, ξ P Rd, Fruspkq “ ûpkq “

ż

Td
upxqe´2πik¨x dx, k P Zd

(1.25)

respectively when u is a function over Rd (respectively Td).
Any subset S of Td or Rd appearing in this paper will be assumed to be measurable. We

denote Sr to be the expansion of a set S by radius r, defined in (1.23). Throughout the paper,

Scr always denotes the complement of Sr. Reg rpSq :“ pScrq
c
r is the r-regularization of S. We will

also say a set S Ď Td is r-regular if S “ Reg rpSq.

2. Equivalent formulation of Wasserstein-infinity distance

In this section we prove Theorem 1.7. In (1.24), one clearly has LHS ě RHS. In fact, let

r ą 0 satisfies the condition on the RHS, i.e., there exists S Ď Td such that
ż

S

ρ1pxqdx ą

ż

Sr

ρ2pyqdy. (2.1)

Then for any transport plan µpx,yq from ρ1 to ρ2, we have

I1 :“

ż

S

ρ1pxqdx “

ż

S

ż

Td
µpx,yqdy dx, I2 :“

ż

Sr

ρ2pyqdy “

ż

Td

ż

Sr

µpx,yqdy dx. (2.2)

This implies that supppµpx,yqχSpxqq Ę SˆSr, because otherwise I1 “
ş

S

ş

Sr
µpx,yqdy dx ď I2

which contradicts (2.1). Therefore we get d8pρ1, ρ2q ě r which proves the claim.

To deal with the other direction LHS ď RHS for (1.24), we need the following lemma which

is a weighted version of Hall’s Theorem.

Lemma 2.1. Let a1, . . . , an, b1, . . . , bm be positive real numbers with
ř

ai “
ř

bi “ 1. Let

pV, Eq, V “ X Y Y “ tx1, . . . , xnu Y ty1, . . . , ymu be a bipartite graph. Then the following are

equivalent:
8



‚ There exists an nˆm nonnegative matrix tciju, such that

cij “ 0, @pxi, yjq R E ,
ÿ

i

cij “ bj , j “ 1, . . . ,m,
ÿ

j

cij “ ai, i “ 1, . . . , n. (2.3)

‚ For all subsets S Ď X,
ř

xiPS
ai ď

ř

yjPN pSq bj where N pSq denotes the neighborhood of

S in the graph pV, Eq.

Proof. Clearly item 1 implies item 2, since
ř

xiPS
ai “

ř

xiPS

ř

j cij “
ř

xiPS

ř

yjPN pSq cij ď
ř

yjPN pSq bj . To prove the converse, assume the opposite of item 1. Let tciju be the maximizer

of
ř

ij cij in the set of nonnegative matrices satisfying

cij “ 0, @pxi, yjq R E ,
ÿ

i

cij ď bj , j “ 1, . . . ,m,
ÿ

j

cij ď ai, i “ 1, . . . , n. (2.4)

then
ř

ij cij ă 1, which implies that there exists i0 such that
ř

j ci0j ă ai0 . Define S0 “ txi0u,

and we iteratively define Sk Ď X,Tk Ď Y as follows:

‚ Tk “ N pSk´1q.

‚ Sk “ Sk´1 YNcpTkq where NcpTkq “ txi : there exists yj P Tk such that cij ą 0u.

‚ If pSk, Tkq “ pSk´1, Tk´1q for some k, then the iteration stops.

It is clear that tSku and tTku are nondecreasing sequence of sets, and therefore the iteration

stops at some finite k.

We claim that every yj P Tk satisfies
ř

i cij “ bj . Otherwise, let k be the first time there

exists yjk P Tk with
ř

i cijk ă bjk , and then
ř

i cij “ bj ą 0 for any yj P Tl, l “ 1, . . . , k ´ 1.

Then by the iteration procedure, we have a sequence of distinct elements

xi0 , yj1 , xi1 , yj2 , . . . , xik´1
, yjk , (2.5)

such that pxil , yjl`1
q P E , l “ 0, 1, . . . , k ´ 1 and ciljl ą 0, l “ 1, 2, . . . , k. Then, we define tc̃iju

being the same as tciju except the changes

c̃iljl`1
“ ciljl`1

` ε, l “ 0, 1, . . . , k ´ 1, c̃iljl “ ciljl ´ ε, l “ 1, 2, . . . , k, (2.6)

for ε ą 0 small. Then
ř

j c̃i0j “
ř

j ci0j ` ε ă ai0 ,
ř

i c̃ijk “
ř

i cijk ` ε ă bjk , and all the

other
ř

i c̃ij and
ř

j c̃ij are the same for those with cij . Therefore tc̃iju also satisfies (2.4) with
ř

ij c̃ij “
ř

ij cij ` ε, contradicting the maximality of
ř

ij cij .

Denote the final state of the iteration as pS, T q, then T “ N pSq and NcpT q Ď S, and every

yj P T satisfies
ř

i cij “ bj . Then
ÿ

xiPS

ai ą
ÿ

xiPS

ÿ

j

cij “
ÿ

xiPS

ÿ

yjPN pSq

cij “
ÿ

yjPN pSq

ÿ

xiPS

cij “
ÿ

yjPN pSq

ÿ

i

cij “
ÿ

yjPN pSq

bj , (2.7)

where the first inequality uses (2.4) and xi0 P S; the second equality uses the fact that yj P

N pSq “ T and NcpT q Ď S. Therefore this S contradicts item 2 in the statement of the lemma.

�

Remark 2.2. When the weights ai, bj are all rational numbers, Lemma 2.1 is a direct conse-

quence of the classical Hall’s Theorem [Hal35]. However, it is necessary for us to treat the case

of irrational weights, because there exist probability measures ρ which cannot be approximated by

empirical measures in (2.8) with rational weights in the sense of the d8 distance. It is clear that

ρ “ 1?
2
δpxq ` p1´ 1?

2
qδpx´ 1

2 q in 1D is such an example.

This lemma allows us to prove Theorem 1.7 in the case of weighted empirical measures.

Lemma 2.3. Theorem 1.7 holds if

ρ1pxq “
n
ÿ

i“1

aiδpx´ xiq, ρ2pxq “
m
ÿ

i“1

bjδpx´ yjq, (2.8)

9
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Figure 3. Proof of Lemma 2.3. Here ρ1 “
1
N

řN
j“1 δpx´ xjq, N “ 5, is shown

by the red spots, and ρ2 “
1
N

řN
j“1 δpx ´ yjq is shown by the blue squares.

The two pictures are the graph pV, Erq (with the black segments represent the

edges), for r “ 0.18 and r “ 0.19 respectively. pV, E0.18q does not admit a

perfect matching because the set of red spots in the dashed circle violates item

2 of Lemma 2.1. pV, E0.19q admits a perfect matching, as indicated by the

green arrows, which provide a transport plan from ρ1 to ρ2. Therefore one can

conclude 0.18 ď d8pρ1, ρ2q ă 0.19.

for some n,m P N, x1, . . . ,xn,y1, . . . ,ym P Td, ai, bj ą 0,
ř

i ai “
ř

j bj “ 1. Furthermore, in

this case the supremum on the RHS of (1.24) can be achieved.

See Figure 3 as an illustration.

Proof. It suffices to prove the ď direction in (1.24). For r ą 0, define a bipartite graph pV, Erq
by

V “ tx1, . . . ,xnu Y ty1, . . . ,ymu, Er “ tpxi,yjq : |xi ´ yj | ă ru. (2.9)

Notice that the tciju in Lemma 2.1, if exists, would provide a transport plan µpx,yq “
ř

ij cijδpx´

xiqδpy ´ yjq with maxpx,yqPsuppµ |x ´ y| ă r. Therefore, taking r “ d8pρ1, ρ2q, there does

not exist such tciju by the definition of d8. By Lemma 2.1, this implies the existence of

S Ď tx1, . . . ,xNu such that
ÿ

xiPS

ai ą
ÿ

yjPN pSq

bj , (2.10)

that is,
ż

S

ρ1 dx ą

ż

Sr

ρ2 dx, (2.11)

Therefore we get

d8pρ1, ρ2q ď sup
!

r : DS s.t.

ż

S

ρ1 dx ą

ż

Sr

ρ2 dx
)

. (2.12)

and the supremum on the RHS can be achieved, which finishes the proof.

�

Proof of Theorem 1.7. It suffices to prove the ď direction in (1.24). Identify Td as r0, 1qd, and

denote GN “ t0,
1
N . . . , N´1

N ud as the set of grid points for N P N. Define

ρ1,N pxq “
ÿ

jPGN

m1,jδpx´ jq PM, m1,j :“

ż

y´jPr0, 1
N q

d

ρpyqdy, (2.13)
10



as an approximation of ρ1, and similarly define ρ2,N . It is clear that

d8pρ1, ρ1,N q ď

?
d

N
, d8pρ2, ρ2,N q ď

?
d

N
. (2.14)

Then applying Lemma 2.3 gives

d8pρ1,N , ρ2,N q “ max
!

r : DS s.t.

ż

S

ρ1,N dx ą

ż

Sr

ρ2,N dx
)

. (2.15)

Therefore there exists some set SpNq, which is a subset of GN due to the proof of Lemma 2.3,

such that
ż

SpNq
ρ1,N dx ą

ż

S
pNq
rN

ρ2,N dx, rN “ d8pρ1,N , ρ2,N q ě d8pρ1, ρ2q ´
2
?
d

N
. (2.16)

Define

S̃pNq “
!

x : x´ j P r0,
1

N
qd for some j P SpNq

)

. (2.17)

Then it is clear that
ż

SpNq
ρ1,N dx “

ż

S̃pNq
ρ1 dx, S̃pNq Ď pSpNqq?d{N , (2.18)

where the subscript
?
d{N is interpreted as in (1.23). Also, by (2.14) and the ě direction of

(1.24), we have
ż

T

ρ2 dx ď

ż

T?d{N`ε

ρ2,N dx, (2.19)

for any T Ď Td and ε ą 0. Applying this with T “ pS̃pNqqr´2
?
d{N and ε “

?
d{N , we get

ż

pS̃pNqqr

ρ2,N dx ě

ż

pS̃pNqqr´2
?
d{N

ρ2 dx, (2.20)

for any r ě 2
?
d{N . Therefore, combined with (2.18) and (2.16), we get

ż

S̃pNq
ρ1 dx “

ż

SpNq
ρ1,N dx ą

ż

pSpNqqrN

ρ2,N dx ě

ż

pS̃pNqqrN´
?
d{N

ρ2,N dx ě

ż

pS̃pNqqrN´3
?
d{N

ρ2 dx,

(2.21)

where the second inequality uses the fact pS̃pNqqrN´
?
d{N Ď pSpNqqrN , coming from S̃pNq Ď

pSpNqq?d{N in (2.18). This implies that the RHS of (1.24) is at least rN´
3
?
d

N ě d8pρ1, ρ2q´
5
?
d

N .

Sending N Ñ8, we get the conclusion. �

Remark 2.4. From the proof, it is clear that Theorem 1.7 is also true if Td is replaced by any

compact Riemannian manifold, or more generally, any locally compact Riemannian manifold

with ρ1 and ρ2 compactly supported.

3. Proof of Theorem 1.1, the case 1 ď p ď d

In this section we prove Theorem 1.1 in the case 1 ď p ď d. We first need an isoperimetric

inequality. The classical isoperimetric inequality [Oss78] takes the form |SrzS| ě cr|S|pd´1q{d

for any bounded set S Ď Rd and r ą 0. However, for a set S Ď Td, it may happen that both

|Sc| and |SrzS| are small but |S| “ Op1q. Therefore we need an improvement which takes the

following form.

Lemma 3.1. Let S be a nonempty subset of Td, and r ą 0. Assume Scr ‰ H. Then

|SrzS| ě crmint|S|, |Sc|u
d´1
d . (3.1)

We also need a lemma on the layers of expansions of a set S.
11



Lemma 3.2. For any S Ď Td,

|S2rzSr| ď C|SrzS|, (3.2)

with C only depending on d.

The proofs of both lemmas are in the Appendix.

Let ψ : Rd Ñ R be a nonnegative smooth radial function supported inside Bp0; 1q with
ş

Rd ψ dx “ 1, and denote ψεpxq “
1
εd
ψpxε q for 0 ă ε ă 1{2. ψ is a radial function in the Schwartz

class, and so is ψ̂, with ψ̂p0q “ 1. ψε can also be viewed as a smooth function on Td (identified

with r´1{2, 1{2qd), still denoted as ψε, whose Fourier coefficients are given by the values of

ψ̂ε “ ψ̂pε¨q at integer points.

Proof of Theorem 1.1, 1 ď p ď d case. In this proof we will write W for Ws. We may assume

d8pρ, 1q ą 0. Apply Theorem 1.7 to get a set S such that
ż

S

ρdx ą

ż

S3r

1 dx “ |S3r|, (3.3)

for some r ą d8pρ, 1q{p4
?
dq. We may assume r ă 1{2 because d8pρ, 1q ď

?
d{2, and thus ψr is

well-defined on Td and supported inside Bp0; rq.

We define the set and test function

T :“ Sc3r, g “ χS̃ ˚ ψr, S̃ :“ Reg 2rpSrq “ T c2r, (3.4)

which is supported inside S̃r and takes values in r0, 1s. It is clear that distpS̃, T q ě 2r. Therefore

distpS̃r, T q ě r. Therefore

S̃r X Tr “ supp g X Tr “ H. (3.5)

Also notice that for any x P S, we have Bpx; rq Ď Sr Ď S̃, and thus g|S “ 1. Therefore,

combining with (3.3), we get
ż

Td
gpxqpρpxq ´ 1qdx ě

ż

S

ρpxqdx´

ż

supp g

1 dx ą |T c| ´ | supp g| “ |T cz supp g|

ě|T czT cr | “ |TrzT |.

(3.6)

Lemma 3.2 applied to T gives

|T2rzTr| ď C|TrzT |. (3.7)

By (3.5), we have

|T2rzTr| “ |S̃
czTr| ě |S̃

czS̃cr | “ |S̃rzS̃|. (3.8)

Therefore we get the lower bound
ż

Td
gpxqpρpxq ´ 1qdx ě c|S̃rzS̃|. (3.9)

Then we use Fourier expressions to give an upper bound
ż

Td
gpxqpρpxq ´ 1qdx “

ÿ

k‰0

ĝpkq ¯̂ρpkq “
ÿ

k‰0

ψ̂prkqχ̂S̃pkq
¯̂ρpkq “

ÿ

k‰0

ψ̂prkq

Ŵ pkq
χ̂S̃pkq

¯̂
W pkq ¯̂ρpkq

“

ż

Td
F´1

´ ψ̂pr¨q

Ŵ p¨q
χ̂S̃p¨q

¯

pxqpW ˚ ρqpxqdx

ď

›

›

›
F´1

´ ψ̂pr¨q

Ŵ p¨q
χ̂S̃p¨q

¯
›

›

›

Lq
}W ˚ ρ}Lp ,

(3.10)

with 1{p ` 1{q “ 1. Here we used the fact that Ŵ pkq is real and nonzero for k ‰ 0, and the

k “ 0 coefficient of the quantity inside F´1 is viewed as 0. Notice that

F´1
´ ψ̂pr¨q

Ŵ p¨q
χ̂S̃p¨q

¯

“ χS̃ ˚ ur “ χS̃c ˚ ur, ur :“ F´1
´ ψ̂pr¨q

Ŵ p¨q

¯

“ F´1
´

ψ̂pr¨q| ¨ |d´s
¯

, (3.11)
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using the fact that ur is mean-zero on Td. Therefore, by Young’s inequality,
›

›

›
F´1

´ ψ̂pr¨q

Ŵ p¨q
χ̂S̃p¨q

¯
›

›

›

Lq
ď mint}χS̃}Lq , }χS̃c}Lqu}ur}L1 “ mint|S̃|, |S̃c|u1{q}ur}L1 . (3.12)

Lemma 3.6 stated below implies that }ur}L1 ď Cr´d`s. Combined with (3.9) and (3.10), we get

|S̃rzS̃| ď C}W ˚ ρ}Lp mint|S̃|, |S̃c|u1{qr´d`s, (3.13)

i.e.,

}W ˚ ρ}Lp ě crd´s
|S̃rzS̃|

mint|S̃|, |S̃c|u1{q
ě crd´s`1 mint|S̃|, |S̃c|u

d´1
d ´ 1

q , (3.14)

by applying Lemma 3.1 to pS̃, rq. Notice that the last power

d´ 1

d
´

1

q
“ 1´

1

d
´

1

q
“

1

p
´

1

d
ě 0, (3.15)

for 1 ď p ď d. Therefore, from the fact that mint|S̃|, |S̃c|u ě crd (since both contain at least a

ball of radius r), we see that mint|S̃|, |S̃|cu
d´1
d ´ 1

q ě pcrdq
d´1
d ´ 1

q “ cr
d
p´1. Therefore, (3.14) gives

}W ˚ ρ}Lp ě crd´s`
d
p , (3.16)

which is the conclusion. �

Remark 3.3. In the case p “ 1, one could simplify the proof by taking g “ χSr ˚ ψr, without

using regularization, Lemma 3.2 or Lemma 3.1. The reason is that the quantity mint|S̃|, |S̃c|u

does not appear in (3.14) since q “ 8, and one can directly bound the numerator (now |S2rzSr|

after replacing S̃ by Sr) from below by crd and finish the proof.

Remark 3.4. The use of regularization is essential here. It is worth noticing that S is 3r-regular

does not imply Sr being 2r-regular. To see this, one can consider the example where S is a set

of two isolated points with distance 2
?

5r.

Remark 3.5. For p ą d ě 2, we have at least a trivial bound d8pρ, 1q ď C}Ws ˚ ρ}
1{pd`1´sq

Ld
ď

C}Ws ˚ ρ}
1{pd`1´sq
Lp since Td has finite measure. However we do not know whether this estimates

is sharp in terms of the scaling.

Lemma 3.6. Let 1 ď q ď 8, 0 ă ε ă 1{2, β ě 0, and

uε :“ F´1
´

ψ̂pεkq|k|β
¯

, (3.17)

be a function on Td. There holds

}uε}Lq ď Cε´β´d{p, (3.18)

with C independent of ε and 1{p` 1{q “ 1.

The proof of the 1 ď p ď d case of Theorem 1.1 only uses the case q “ 1 of Lemma 3.6.

The general case of Lemma 3.6 will be used in the next section.

Proof. Define

u :“ F´1
´

ψ̂pξq|ξ|β
¯

, (3.19)

as a function on Rd. u is well-defined and is in L8pRdq since ψ̂ is in the Schwartz class SpRdq,
and β ě 0. We first claim that u P L1pRdq. In fact, the case β “ 0 is trivial. To deal with the

case β ą 0, we aim to derive an estimate

|upxq| ď C|x|´pd`βq ` C|x|´pd`1q, @|x| ě 1, (3.20)

which implies the claim. To get (3.20), we take x with |x| ě 1, and write

upxq “

ż

Rd
ψ̂pξq|ξ|βe2πix¨ξ dξ “

ż

|ξ|ď|x|´1

`

ż

|ξ|ą|x|´1

. (3.21)
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The first integral is estimated by
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|ξ|ď|x|´1

ψ̂pξq|ξ|βe2πix¨ξ dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż

|ξ|ď|x|´1

|ξ|β dξ “ C|x|´pd`βq. (3.22)

To estimate the second integral at x “ px1, . . . , xdq, we assume without loss of generality that

|x1| ě |x|{
?
d, and then

ż

|ξ|ą|x|´1

ψ̂pξq|ξ|βe2πix¨ξ dξ “
1

2πix1

ż

|ξ|ą|x|´1

ψ̂pξq|ξ|βBξ1e
2πix¨ξ dξ

“
1

2πix1

ż

|ξ|“|x|´1

ψ̂pξq|ξ|βe2πix¨ξnpξq ¨ ~e1 dSpξq ´
1

2πix1

ż

|ξ|ą|x|´1

Bξ1pψ̂pξq|ξ|
βqe2πix¨ξ dξ

“ ¨ ¨ ¨ “

d
ÿ

j“0

p´1qj

p2πix1q
j`1

ż

|ξ|“|x|´1

B
j
ξ1
pψ̂pξq|ξ|βqe2πix¨ξnpξq ¨ ~e1 dSpξq

`
p´1qd`1

p2πix1q
d`1

ż

|ξ|ą|x|´1

B
d`1
ξ1
pψ̂pξq|ξ|βqe2πix¨ξ dξ.

(3.23)

where we use integration by parts d` 1 times, and notice that there is no contribution from the

boundary terms at infinity due to the fast decay of ψ̂pξq|ξ|β and its derivatives.

To estimate the RHS integrals in (3.23), we first notice that for any 0 ă |ξ| ď 1,

ˇ

ˇB
j
ξ1
pψ̂pξq|ξ|βq

ˇ

ˇ ď

j
ÿ

k“0

ˆ

j

k

˙

ˇ

ˇB
j´k
ξ1

ψ̂pξq
ˇ

ˇ ¨
ˇ

ˇBkξ1 |ξ|
β
ˇ

ˇ ď C
j
ÿ

k“0

|ξ|β´k ď C|ξ|β´j . (3.24)

Therefore, for any 0 ď j ď d,
ˇ

ˇ

ˇ

ˇ

ˇ

p´1qj

p2πix1q
j`1

ż

|ξ|“|x|´1

B
j
ξ1
pψ̂pξq|ξ|βqe2πix¨ξnpξq ¨ ~e1 dSpξq

ˇ

ˇ

ˇ

ˇ

ˇ

ďC|x|´pj`1q ¨ |x|´pβ´jq ¨ |x|´pd´1q “ C|x|´pd`βq.

(3.25)

where we used (3.24) with |ξ| “ |x|´1 ď 1. Also, due to the fast decay of Bd`1
ξ1
pψ̂pξq|ξ|βq at

infinity, we may take a large m and apply (3.24) again to get
ˇ

ˇ

ˇ

ˇ

ˇ

p´1qd`1

p2πix1q
d`1

ż

|ξ|ą|x|´1

B
d`1
ξ1
pψ̂pξq|ξ|βqe2πix¨ξ dξ

ˇ

ˇ

ˇ

ˇ

ˇ

ďC|x|´pd`1q

ż

|x|´1ă|ξ|ď1

|ξ|β´d´1 dξ ` C|x|´pd`1q

ż

|ξ|ą1

|ξ|´m dξ

ďC|x|´pd`1qp|x|´pβ´1q ` 1q ď C|x|´pd`βq ` C|x|´pd`1q.

(3.26)

Therefore we conclude (3.20).

Next we claim that

uεpxq “ ε´d´β
ÿ

jPZd
up

x´ j

ε
q, (3.27)

which would finish the proof since it implies

}uε}L1pTdq “ε
´d´β

›

›

›

›

›

›

ÿ

jPZd
up
¨ ´ j

ε
q

›

›

›

›

›

›

L1pr´1{2,1{2qdq

ď ε´d´β
ÿ

jPZd

›

›

›

›

up
¨ ´ j

ε
q

›

›

›

›

L1pr´1{2,1{2qdq

“ε´d´β}up¨{εq}L1pRdq “ ε´β}u}L1pRdq.

(3.28)

Using (3.27), (3.20) and u P L8, it is also clear that }uε}L8 ď Cε´d´β for 0 ă ε ď 1{2. Therefore,

by interpolation,

}uε}Lq ď }uε}
1{q
L1 }uε}

1{p
L8 ď Cε´β´d{p. (3.29)
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To see (3.27), we first recall the Poisson summation formula: let Φpxq “
ř

jPZd δpx ´ jq,

then Φ̂pξq “
ř

jPZd δpξ ´ jq. Denote ũε as the periodic extension of uε to Rd, then

ˆ̃uεpξq “
ÿ

jPZd
ûεpjqδpξ ´ jq “

ÿ

jPZd
ψ̂pεjq|j|βδpξ ´ jq “ ε´β

ÿ

jPZd
ûpεjqδpξ ´ jq, (3.30)

i.e.,

ˆ̃uεpξq “ ε´β ûpεξqΦ̂pξq. (3.31)

Therefore

ũεpxq “ ε´βF´1pûpε¨qq ˚ Φ “ ε´d´βup¨{εq ˚ Φ “ ε´d´β
ÿ

jPZd
up

x´ j

ε
q. (3.32)

�

4. Proof of Theorem 1.1, the case d “ 1

In this section we prove Theorem 1.1 in the case d “ 1. We recall from (1.6) that d8pρ, 1q “
1
2Drρs. Therefore, instead of taking a general S which approximately achieves (1.24), we may

take a closed interval I with
ş

I
pρ ´ 1qdx “ 2d8pρ, 1q. The function χIr (for r ą 0) is much

easier to deal with than a general χSr , and this allows us to gain improvement in the 1D case.

Then we need to enlarge the range of parameter in Lemma 3.6 for 1D.

Lemma 4.1. Let d “ 1, 1 ď q ď 8, 0 ă ε ă 1{2, ´1 ă β ă 0, and

uε :“ F´1
´

ψ̂pεkq|k|β
¯

, (4.1)

be a function on T, with ûεp0q “ 0. There holds

}uε}Lq ď C

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε´β´1{p, ´
1

p
ă β ă 0

p1` | log ε|q1{q, β “ ´
1

p

1, ´1 ă β ă ´
1

p

(4.2)

with C independent of ε and 1{p` 1{q “ 1.

Proof. By Lemma 9.1, the periodized 1D Riesz kernel Ws with 0 ă s ă 1 is smooth on Tzt0u,
and differs from c|x|´s by a smooth function (identifying T “ r´1{2, 1{2q) near 0. Therefore, we

have
1

2r

ż

Bpx;rq

|Wspyq| dy ď C maxtWspxq, 1u,
1

2r

ż

Bpx;rq

|Wspyq| dy ď Cr´s, (4.3)

for any x P T and 0 ă r ď 1{2, since the same property is clearly true for y ÞÑ |y|´s near 0.

Therefore

uε “ ψε ˚Ws, s “ 1` β P p0, 1q, (4.4)

can be estimated by

|uεpxq| ď C

$

&

%

ε´s, |x| ă ε

1` |x|´s, ε ď |x| ď
1

2

(4.5)

Therefore

}uε}Lq ď Cε´s`1{q ` C

˜

ż 1{2

ε

p1` x´sqqdx

¸1{q

. (4.6)

Then we separate into cases:
15



‚ If β ą ´ 1
p , then ´sq “ ´q ´ βq ă ´q ` q{p “ ´1. Then

ż 1{2

ε

p1` x´sqqdx ď Cε´sq`1, (4.7)

which gives }uε}Lq ď Cε´s`1{q “ Cε´β´1{p.

‚ If β “ ´ 1
p , then ´sq “ ´1. Then

ż 1{2

ε

p1` x´sqqdx ď Cp1` | log ε|q, (4.8)

which gives }uε}Lq ď Cp1` | log ε|q1{q.

‚ If β ă ´ 1
p , then ´sq ą ´1. Then

ż 1{2

ε

p1` x´sqqdx ď C, (4.9)

which gives }uε}Lq ď C.

�

Proof of Theorem 1.1, d “ 1, and 1 ă p ă 8 case. As discussed at the beginning of this section,

we may take a closed interval I with
ş

I
ρ dx ě |I3r| with r “ d8pρ, 1q{3. Then, defining

g “ χIr ˚ ψr, we get
ż

T
gpxqpρpxq ´ 1qdx ě 2r, (4.10)

and
ż

T
gpxqpρpxq ´ 1qdx ď

›

›

›
F´1

´ ψ̂pr¨q

Ŵ p¨q
χ̂Ir p¨q

¯
›

›

›

Lq
}W ˚ ρ}Lp , (4.11)

similar to the proof of the 1 ď p ď d case. Notice that

χ1Ir “ δx1 ´ δx2 , where rx1, x2s “ Ir, (4.12)

and

χ̂Ir pkq “
1

2πik
xχ1Ir pkq, k ‰ 0. (4.13)

Therefore

›

›

›
F´1

´ ψ̂pr¨q

Ŵ p¨q
χ̂Ir p¨q

¯
›

›

›

Lq
“

›

›

›
F´1

´ ψ̂pr¨q

2πip¨qŴ p¨q

¯

˚ pδx1
´ δx2

q

›

›

›

Lq

ďC
›

›

›
F´1

´

ψ̂pr¨q| ¨ |´ssgnp¨q
¯
›

›

›

Lq
ď C

›

›

›
F´1

´

ψ̂pr¨q| ¨ |´s
¯
›

›

›

Lq
,

(4.14)

where the last inequality uses the boundedness of the Hilbert transform on Lq. Then we apply

Lemma 3.6 in the case s ď 0 and Lemma 4.1 in the case 0 ă s ă 1 and get

›

›

›
F´1

´

ψ̂pr¨q| ¨ |´s
¯
›

›

›

Lq
ď C

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rs´1{p, s ă
1

p

p1` | log r|q1{q, s “
1

p

1,
1

p
ă s ă 1

(4.15)

Combined with (4.10) and (4.11), we get that r is less than the above RHS times }W ˚ ρ}Lp ,

which is the conclusion.

�
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5. Optimality of scaling

In this section we prove the following theorem, which indicates (iii) in Theorem 1.1.

Theorem 5.1. Let 0 ă s ă d and 1 ď p ď 8. There exists constant c ą 0, ρ PM with d8pρ, 1q

arbitrarily small, such that

d8pρ, 1q ě c}Ws ˚ ρ}
mintγ,1u
Lp , γ “

1

d` d{p´ s
. (5.1)

We first construct a microscopic profile by taking derivatives on the mollifier ψ defined in

Section 3.

Lemma 5.2. Let M P N, and define

ΨM “ p´∆qMψ, ΨM,εpxq “
1

εd
ΨM p

x

ε
q, (5.2)

as functions on Rd. Then for any smooth function f defined on Bp0; εq,
ż

Bp0;εq

fpxqΨM,εpxqdx ď Cε2M }f}W 2M,8pBp0;εqq, (5.3)

where C depends on d,M,ψ.

We will see in (5.10) that taking a multiple Laplacian on ψ and use it in the construction

of ρ will make sure that W ˚ ρ concentrates near 0.

Proof. We first claim that
ż

Bp0;εq

fpxqΨM,εpxqdx “ 0, (5.4)

if f is a polynomial of degree no more than 2M ´ 1. To see this, we may assume ε “ 1 and f

is a monomial xα with the multi-index |α| ď 2M ´ 1 without loss of generality. Then fΨM is a

smooth function compactly supported in Bp0; 1q, whose integral is given by
ż

Bp0;1q

fpxqΨM pxqdx “

ż

Rd
xαΨM pxqdx “ Fpp¨qαΨM qp0q “

1

p´2πiq|α|
pBαξ Ψ̂M qp0q. (5.5)

Notice that Ψ̂M pξq “ p2πq
2M |ξ|2M ψ̂pξq with ψ̂ being a smooth function. Therefore pBαξ Ψ̂M qp0q “

0 and the claim follows.

To show Lemma 5.3, we use Taylor expansion for f at 0 to get

|fpxq ´ T2M´1rf spxq| ď C|x|2M }f}W 2M,8pBp0;εqq ď Cε2M }f}W 2M,8pBp0;εqq, (5.6)

for any |x| ă ε, where T2M´1rf s is the Taylor polynomial of degree 2M ´ 1 of f . By (5.4), we

get
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bp0;εq

fpxqΨM,εpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bp0;εq

pfpxq ´ T2M´1rf spxqqΨM,εpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ďCε2M }f}W 2M,8pBp0;εqq

ż

Bp0;εq

|ΨM,εpxq| dx ď Cε2M }f}W 2M,8pBp0;εqq.

(5.7)

�

Proof of Theorem 5.1. It is easy to see the existence of ρ P M with d8pρ, 1q arbitrarily small,

such that d8pρ, 1q ě c}Ws ˚ ρ}Lp . In fact, one can take ρ “ 1´ ε|Bp0; 1{3q|` εχBp0;1{3q for small

ε ą 0, and notice that d8pρ, 1q ě cε (by Theorem 1.7 with S “ Bp0; 1{3q) and }Ws ˚ ρ}Lp “ Cε.
17



Then we deal with the power d ` d{p ´ s in (5.1). Let M P N to be determined. For

any small ε ą 0, the function ΨM,ε in Lemma 5.2 can be viewed as a function on Td, and we

construct

ρ “ 1` c0ε
dΨM,ε, c0 “

1

}ΨM }L8
, (5.8)

which is clearly a probability measure on Td with }ρ ´ 1}L8 ď 1 and supppρ ´ 1q Ď Bp0; εq. It

is clear that d8pρ, 1q ě cε by Theorem 1.7 with S “ Bp0; εRq or its complement for some fixed

R P p0, 1q with
ş

Bp0;Rq
ΨM dx ‰ 0.

Next we analyze Ws ˚ ρ. If |x| ă 2ε, then Lemma 9.1 and the fact }ρ}L8 ď 2 show that

|pWs ˚ ρqpxq| ď 2

ż

Bpx;εq

Wspyqdy ď Cεd´s. (5.9)

If x P r´1{2, 1{2qd with |x| ě 2ε , then Lemmas 9.1 and 5.2 shows that

|pWs ˚ ρqpxq| ď Cε2M`d}Ws}W 2M,8pBpx;εqq ď Cεd`2M ¨ |x|´s´2M . (5.10)

Therefore
ż

|x|ď2ε

|pWs ˚ ρqpxq|
p dx ď Cεd`ppd´sq, (5.11)

and
ż

|x|ą2ε

|pWs ˚ ρqpxq|
p dx ď Cεppd`2Mq

ż

?
d

2ε

rpp´s´2Mq`d´1 dr

ďCεppd`2Mq ¨ εpp´s´2Mq`d “ Cεd`ppd´sq,

(5.12)

by taking M sufficiently large so that pp´s´ 2Mq ` d´ 1 ă ´1. Therefore

}Ws ˚ ρ}Lp ď Cεd`d{p´s. (5.13)

This proves the conclusion with the power d` d{p´ s, and finishes the proof.

�
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7. Appendix: Proof of Lemma 3.1

Lemma 7.1 (Loomis-Whitney inequality [LW49]). Let S Ď Td with d ą 1. Then

|S|d´1 ď

d
ź

j“1

|πjpSq|, (7.1)

where πj is the projection onto the j-th coordinate hyperplane.

Proof of Lemma 3.1. The 1D case is trivial. In the rest of this proof, we will assume d ě 2.

Denote ε “ |SrzS|. It is clear that we may assume r ă 0.1
2pd`0.1q without loss of generality.

First notice that either |S| ď 1{2 or |Sc| ď 1{2. We will denote the restriction of S onto lines

of coordinate directions as S|1;px2,...,xdq :“ tx1 P T : px1, x2, . . . , xdq P Su and similarly define

S|j;px1,...,x̂j ,...,xdq with x̂j “ px1, . . . , x̂j , . . . , xdq P Td´1.
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Case 1: If |S| ď 1{2, then define

Aj “ tx̂j : S|j;x̂j “ Hu, Bj “
!

x̂j :
ˇ

ˇ

ˇ
S|j;x̂j

ˇ

ˇ

ˇ
ą

d

d` 0.1

)

, Dj “ Td´1zpAjYBjq, j “ 1, . . . , d.

(7.2)

It is clear that |B1| ď p1 ` 0.1{dq|S|. For any x̂1 P D1, we have |pS|1;x̂1
qc| ě 0.1

d`0.1 ą 2r, and

thus after an r-expansion,
ˇ

ˇ

ˇ
Sr|1;x̂1

zS|1;x̂1

ˇ

ˇ

ˇ
ě 2r. (7.3)

Integrating in x̂1 P D1, we see that

2r|D1| ď

ż

D1

ˇ

ˇ

ˇ
Sr|1;x̂1

zS|1;x̂1

ˇ

ˇ

ˇ
dx̂1 ď

ż

Td´1

ˇ

ˇ

ˇ
Sr|1;x̂1

zS|1;x̂1

ˇ

ˇ

ˇ
dx̂1 “ ε, (7.4)

i.e., |D1| ď
ε

2r . Therefore, combined with the same estimates for other Bj and Dj and applying

Lemma 7.1, we get

|S|d´1 ď

d
ź

j“1

|Bj YDj | ď

´

p1` 0.1{dq|S| `
ε

2r

¯d

. (7.5)

If |S| ą d
0.1 ¨

ε
2r were true, then we would have |S|d´1 ď p1`0.2{dqd|S|d, i.e., 1 ď p1`0.2{dqd|S|,

contradicting the assumption |S| ď 1{2 since p1 ` 0.2{dqd ď e0.2 ă 2. Therefore we have

|S| ď d
0.1 ¨

ε
2r . Substituting into the RHS of (7.5), we obtain |S|d´1 ď C εd

rd
which is the

conclusion.

Case 2: If |Sc| ď 1{2, then define

Aj “ tx̂j : S|j;x̂j “ Hu, Bj “
!

x̂j :
ˇ

ˇ

ˇ
Sc|j;x̂j

ˇ

ˇ

ˇ
ď 2r

)

, Dj “ Td´1zpAj YBjq, j “ 1, . . . , d.

(7.6)

It is clear that |A1| ď |S
c|. For any x̂1 P B1, it is clear that Scr |1;x̂1

“ H. Therefore

|Sc X pTx1
ˆB1q| ď ε (7.7)

where Tx1
ˆ B1 denotes the set of points with px2, . . . , xdq coordinate in B1 and x1 coordinate

in T. For any x̂1 P D1, we have
ˇ

ˇ

ˇ
Sr|1;x̂1

zS|1;x̂1

ˇ

ˇ

ˇ
ě 2r, and thus we get |D1| ď

ε
2r as before.

Therefore, combined with the same estimates for other Aj , Bj and Dj ,

|Sc| ď
ˇ

ˇ

ˇ
tx P Sc : px1, . . . , x̂j , . . . , xdq P Aj YDj , j “ 1, . . . , du

ˇ

ˇ

ˇ
`

d
ď

j“1

|Sc X pTxj ˆBjq|

ď

´

|Sc| `
ε

r

¯d{pd´1q

` dε,

(7.8)

where in the second inequality we applied Lemma 7.1 to the first term.

Then notice that ε “ |SrzS| ě c1r
d for some c1 ą 0. In fact, since Scr ‰ H, we have

S 2
3 r
zS 1

3 r
‰ H. Take a point x in this set, then it is clear that Bpx; 1

3rq Ď SrzS, which gives

|SrzS| ě c1r
d with c1 “ |Bp0; 1{3q|. Therefore (7.8) gives

|Sc| ď
´

|Sc| `
ε

r

¯d{pd´1q

` C0

´ ε

r

¯d{pd´1q

, C0 “ dc
´1{pd´1q
1 . (7.9)

Finally we prove |Sc| ď C1p
ε
r q
d{pd´1q for some C1 ą 0 to be determined.

Suppose the contrary that |Sc| ą C1p
ε
r q
d{pd´1q. Let C2 ą 0 be a constant to be determined.

‚ If C1p
ε
r q
d{pd´1q ď |Sc| ď C2

ε
r , then

´

|Sc| `
ε

r

¯d{pd´1q

` C0

´ ε

r

¯d{pd´1q

ď

´

p1` C2q
d{pd´1q ` C0

¯´ ε

r

¯d{pd´1q

. (7.10)

giving a contradiction if

p1` C2q
d{pd´1q ` C0 ă C1. (7.11)
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‚ If C2
ε
r ă |S

c| ď 1{2, then

´

|Sc| `
ε

r

¯d{pd´1q

` C0

´ ε

r

¯d{pd´1q

ď

´

p1`
1

C2
qd{pd´1q `

C0

C
d{pd´1q
2

¯

|Sc|d{pd´1q

ď2´1{pd´1q
´

p1`
1

C2
qd{pd´1q `

C0

C
d{pd´1q
2

¯

|Sc|.

(7.12)

giving a contradiction if
´

1`
1

C2

¯d{pd´1q

`
C0

C
d{pd´1q
2

ă 21{pd´1q. (7.13)

To determine the choice of C1, C2, we first choose C2 large enough so that (7.13) is satisfied.

Then we choose C1 large enough so that (7.11) is satisfied. This finishes the proof of this lemma.

�

8. Appendix: Proof of Lemma 3.2

The following lemma is straightforward.

Lemma 8.1. For any S Ď Td and r ą 0,

x P Reg rpSq ô Bpx; rq Ď Sr. (8.1)

It follows that S Ď Reg rpSq. Furthermore, Sr “ pReg rpSqqr.

This lemma motivates the following definition.

Definition 8.2. Let r ą 0. A set S Ď Td is r-regular if S “ Reg rpSq.

It is clear from Lemma 8.1 that Reg rpSq is r-regular. Next we give some basic properties

of r-regular sets.

Lemma 8.3. Let S be an r-regular set. Then

(1) S is closed.

(2) For any x P BS, there exists y P Scr such that |y ´ x| “ r and Bpy; rq X S “ H.

(3) For any 0 ă r1 ă r, S is r1-regular.

Proof. Item 1: It is clear that pScrqr is open, and thus S “ Reg rpSq “ pS
c
rq
c
r is closed.

Item 2: Take x P BS Ď S. We claim that distpx, Scrq “ r. It is clear that distpx, Scrq ě r.

Suppose distpx, Scrq ą r` ε for some ε ą 0, then Bpx; r` εq Ď Sr, and then pS YBpx; εqqr “ Sr.

Therefore S YBpx; εq Ď Reg rpS YBpx0; εqq “ Reg rpSq “ S, contradicting the assumption that

x P BS. Therefore we see that distpx, Scrq “ r.

Since Scr is closed, distpx, Scrq “ r is achieved at some y P Scr , i.e., |y ´ x| “ r. We claim

that Bpy; rq X S “ H. Suppose not, then there exists some z P S with |y ´ z| ă r. This

contradicts y P Scr . Therefore we get Bpy; rq X S “ H.

Item 3: Let x P Reg r1pSq. Then by (8.1), Bpx; r1q Ď Sr1 . Then Bpx; rq “ pBpx; r1qqr´r1 Ď

pSr1qr´r1 “ Sr. Therefore x P Reg rpSq “ S since S is r-regular. Therefore Reg r1pSq Ď S, i.e., S

is r1-regular.

�

Proof of Lemma 3.2. We may assume that S is r-regular because r-regularizing S would make

S larger with Sr, S2r remaining the same.

By the definition of Sr, it is straightforward to see

ĞS0.9rzS Ď
ď

xPBS

Bpx; rq. (8.2)
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Since ĞS0.9rzS is compact, one can apply Vitali covering lemma to get a finite collection Bpxj ; rq

for j “ 1, . . . , n such that tBpxj ; r{3qu is disjoint, and ĞS0.9rzS Ď
Ťn
j“1Bpxj ; rq. For every j,

we apply items 2 and 3 of Lemma 8.3 to see that there exists yj such that |xj ´ yj | “ r{3 and

Bpyj ; r{3q X S “ H. Since Bpxj ; r{3q Ď Sr, we see that

|Bpxj ; r{3q X pSrzSq| “ |Bpxj ; r{3qzS| ě |Bpxj ; r{3q XBpyj ; r{3q| “ crd, (8.3)

where c only depends on d. Since tBpxj ; r{3qu is disjoint, we get

|SrzS| ě
n
ÿ

j“1

|Bpxj ; r{3q X pSrzSq| ě cnrd. (8.4)

On the other hand, since ĞS0.9rzS Ď
Ťn
j“1Bpxj ; rq, we see that

S2rzS Ď
n
ď

j“1

Bpxj ; 2.1rq. (8.5)

Therefore

|S2rzSr| ď |S2rzS| ď
n
ÿ

j“1

|Bpxj ; 2.1rq| “ Cnrd, (8.6)

which finishes the proof. �

9. Appendix: Explicit formula for Ws

We give an explicit formula for the periodized Riesz potential Ws for 0 ă s ă d. We

will show that the formula (7) in [HSS14] with µptq “ ts{2´1 indeed gives Ws, and obtain the

regularity of Ws accordingly.

Lemma 9.1. Ws in (1.5) satisfies the following regularity conditions:

(1) For any s ă d, Ws is smooth on Tdzt0u.
(2) For 0 ă s ă d, Wspxq ´ cs|x|

´s is a smooth function near 0, for some cs ą 0.

(3) For s “ 0, Ws P L
p for any 1 ď p ă 8, and limxÑ0Wspxq “ 8.

(4) For s ă 0, Ws is continuous.

Furthermore, Ws satisfies (H1)-(H3) for any s ă d.

Proof. First, item 4 is clear since Ŵs P `
1 for s ă 0.

Then, assuming 0 ă s ă d, we claim that

cWspxq ` C “
ÿ

jPZd

ż 8

1

e´|x´j|2tts{2´1 dt`
ÿ

kPZdzt0u

e2πik¨x

ż 1

0

πd{2e´π
2
|k|2{tts{2´1´d{2 dt. (9.1)

It is clear that the RHS of (9.1) is well-defined on Td and finite at every x P Tdzt0u.
Denoting this two terms as w1pxq and w2pxq. We first calculate its Fourier coefficients. It is

clear that ŵ2pkq “
ş1

0
πd{2e´π

2
|k|2{tts{2´1´d{2 dt for any k P Zdzt0u. For w1,

ŵ1pkq “

ż

Rd
e2πik¨x

ż 8

1

e´|x|
2tts{2´1 dtdx “

ż 8

1

ż

Rd
e2πik¨xe´|x|

2t dx ts{2´1 dt

“

ż 8

1

πd{2e´π
2
|k|2{tts{2´1´d{2 dt.

(9.2)

Therefore the k-th Fourier coefficient of the RHS of (9.1) is
ż 8

0

πd{2e´π
2
|k|2{tts{2´1´d{2 dt “

ż 8

0

πd{2e´π
2
|k|2tt´s{2´1`d{2 dt “ c|k|´d`s, (9.3)

by a change of variable t1 “ 1{t, and applying the formula y´s{2 “ 1
Γps{2q

ş8

0
ts{2´1e´ty dt with

y “ π2|k|2 and s replaced by pd´ sq. This verifies the equality in (9.1) in view of (1.5).
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It is clear that w2 is a smooth function since its Fourier coefficients have fast decay at

infinity. For w1, one can extract the j “ 0 term, which is equal to c|x|´s ´
ş1

0
e´|x|

2tts{2´1 dt,

and write

w1pxq “ c|x|´s ´

ż 1

0

e´|x|
2tts{2´1 dt`

ÿ

jPZdzt0u

ż 8

1

e´|x´j|2tts{2´1 dt, (9.4)

for x P r´1{2, 1{2qd. The term
ş1

0
e´|x|

2tts{2´1 dt and the last summation are clearly smooth on

r´1{2, 1{2qd since |x ´ j| is away from 0. Therefore we see that Ws is smooth on Tdzt0u and

Wspxq ´ c|x|´s is a smooth function near 0. This proves item 2, as well as the case 0 ă s ă d

for item 1.

For s ď 0, we take n P N, and notice that (1.5) implies

Ws “Ws1 ˚ ¨ ¨ ¨ ˚Ws1
loooooooomoooooooon

n times

, s1 “
n´ 1

n
d`

1

n
s. (9.5)

For n sufficiently large, we have 0 ă s1 ă d, and item 1 for s follows from item 1 for s1 which

we have proved. For item 3, we take s “ 0, n “ 2, s1 “ d
2 , and notice that items 1, 2 for s1

implies Ws1 P L
2´ε for any ε ą 0. Then it follows from Young’s inequality that Ws P L

p for any

1 ď p ă 8, and the singularity structure given in item 2 for s1 shows that limxÑ0Wspxq “ 8.

By definition, Ws always satisfies (H2), and (H1) is also clear from items 1-4. For (H3),

the case 0 ă s ă d follows from item 2 and the same local property of the power-law potential

|x|´s. The case s ă 0 follows from item 4. For the case s “ 0, notice that Ws “Ws1 ˚Ws1 with

s1 “ d
2 , and Ws1 satisfies (H3). Then we see that for sufficiently large C1 ą 0,

1

|Bp0; rq|

ż

Bpx;rq

pC2
1 `Wspyqqdy “

1

|Bp0; rq|
ppC2

1 `Wsq ˚ χBp0;rqqpxq

“
1

|Bp0; rq|

´

pC1 `Ws1q ˚
`

pC1 `Ws1q ˚ χBp0;rq

˘

¯

pxq ď CppC1 `Ws1q ˚ pC1 `Ws1qqpxq

“CpC2
1 `Wspxqq.

(9.6)

using (H3) and the mean-zero property of Ws1 . This proves (H3) for Ws. �

References
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