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Abstract

We give counterexamples for the modification on Malle’s Conjecture given by Türkelli.
Türkelli’s modification on Malle’s conjecture is inspired by an analogue of Malle’s conjecture
on function field. As a consequence, our counterexamples show that the b constant can be
different between function fields and number fields. Along the same line, we also show that
Klüners’ counterexamples give counterexamples for a natural extension of Malle’s conjecture
on counting number fields by product of ramified primes.
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1 Introduction

1.1 Malle’s Conjecture

It is a standard result in algebraic number theory that there are finitely many number fields
with bounded discriminant. It is then natural to ask how many number fields there are with
bounded discriminant. Malle [Mal02, Mal04] gives a conjectural asymptotic answer for this
question. For each number field F/k with degree n, we define the permutation Galois group
Gal(F/k) to be the image of Gk in Sn induced by Gk action on embeddings of F into k̄. Given
a transitive group G ⊂ Sn, we denote Nk(G,X) to be the number of subfields F ⊂ k̄ with
Gal(F/k) = G with relative discriminant Nmk/Q(disc(F/k)) ≤ X. The conjecture states:

Conjecture 1 (Malle’s conjecture over Number Fields, [Mal02, Mal04]). Given a number field
k and a transitive permutation group G ⊂ Sn. There exists positive constants C(G, k), a(G) ∈ Z
and bM (G, k) ∈ Z such that

Nk(G,X) ∼ C(G, k)X1/a(G) logbM (G,k)−1X. (1.1)

Malle also gives a precise conjectural value for a(G) in [Mal02] and for bM (G, k) in [Mal04], see
Section 2 for precise description of Malle’s proposed constants. Here we use the subscript in
bM (G, k) to distinguish it from the true value b(G, k) for powers of lnX.

Progress has been made towards this conjecture [Wri89, DH71, DW88, Bha05, Bha10, Klü12,
Klü05b, CyDO02, Wan21, MTTW20, BW08, BF10, KP21, KW21]. The integer a(G) has been
widely believed to be true. In all cases towards Conjecture 1 where the asymptotic distribution
for Nk(G,X) is determined, the true value matches the conjectural a(G). Conjecture 1 is also
sometimes termed as strong Malle’s Conjecture, in contrast to the weak Malle’s Conjecture where
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Nk(G,X) is predicted to be bounded between X1/a(G) and X1/a(G)+ε asymptotically. Recently,
work of Ellenberg-Tran-Westerland [ETW17] proves the upper bound in weak Malle’s conjecture
for every permutation group G over global function field k = Fq(t) with large q relatively prime to
|G|, which gives a strong evidence towards the validity of a(G). Klüners and the author show that
the upper bound in weak Malle’s conjecture over number fields is equivalent to the discriminant
multiplicity conjecture in general, and the latter is proved for all nilpotent permutation groups
in [KW21]. For solvable groups, the discriminant multiplicity conjecture is simply equivalent to
`-torsion conjecture, and the latter is shown to be a consequence of a much weakened version of
Cohen-Lenstra type heuristics [PTBW19].

The integer b(G, k) is more mysterious. In 2005, Klüners [Klü05a] gives counterexamples to
Conjecture 1 by noticing that certain intermediate cyclotomic extensions can contribute larger
exponent for lnX than Malle’s prediction bM (G, k). Among these counterexamples of similar
spirit, the most famous one is the wreath product C3 o C2: it is noticed that the number of
C3 oC2-extensions containing the cyclotomic field Q(µ3) is already contributing higher powers of
lnX than bM (G,Q). Klüners also show the correct value b(G,Q) for this example. Essentially,
due the presence of intermediate cyclotomic extensions, one can follow the same construction to
show that Conjecture 1 is inconsistent with itself in general, without proving any distribution.

1.2 Türkelli’s Modification: inspiration and comparison with function
fields

Like many problems in number theory, we can study the counterparts over global function
fields. Conjecture 1 over global function fields can be stated in a similar way (see Section 3 for
explanations on why we do not conjecture an asymptotic distribution). We state the Malle’s
conjecture for global function field, exactly as how [Tür15, Conjecture 1.1] formulates it:

Conjecture 2 (Malle’s Conjecture over Function Field). Given a global function field Q and a
transitive permutation group G ⊂ Sn with (|G|, ch(Q)) = 1. Define a(G) and bM (G,Q) as in
Conjecture 1. Then

NQ(G,X) = Θ(X1/a(G) lnbM (G,Q)−1X). (1.2)

Klüners’ counterexamples also hold over global function fields if we allow constant extensions
contained in G-extensions.

In order to accommodate these counterexamples, Türkelli in [Tür15] gives a modification of
Conjecture 1 by proposing a new b-constant bT (G,Q) for both function fields and number fields,
see Section 2.2 for the description.

Conjecture 3 (Türkelli’s Modification [Tür15]). Given a transitive permutation group G ⊂ Sn
and a global field Q with (|G|, ch(Q)) = 1,

b(G,Q) = bT (G,Q). (1.3)

It is based on an extension of Ellenberg-Venkatesh’s heuristic argument, where b(G,Q) is
related to the number of geometrically connected components of Hurwitz spaces and both a(G)

and bM (G,Q) are shown to match the true counting function when enumerating extensions with-
out constant fields [EV05] (under the heuristic). Türkelli’s new input is to consider G-extensions
L/Q with the fixed subfield LN being exactly the maximal constant extensions contained in G.
This extension of heuristics then leads to a conjectural distribution for such L, given explicity
in [Tür15]. It is then natural that on the function field side the modification is to take the sum

2



over all possible constant extensions. To translate the problem to number fields, Türkelli simply
considers the sum of his heuristic distribution over all possible abelian extensions with Galois
group a quotient of G.

In this paper, we give counterexamples for Conjecture 3 in Theorem 1.3. We demonstrate
the key idea via a simple example:

Example 1.1. Let G = C3 o C4 ⊂ S12 and gcd(q, |G|) = 1 and q large enough comparing to G.
We have

bT (G,Q) = b(G,Fq(t)) = 2, b(G,Q) = bM (G,Q) = 1.

With C4 in place of C2 in Klüner’s counterexample has forbidden the existence of the cyclo-
tomic field Q(µ3) as an intermediate extension over Q. We now make a couple comments on
this example. Firstly, it is probably surprising that in this example the prediction of Malle is
correct whereas the the modification of Türkelli is not! Secondly and more importantly, even
when a number field and a global function field have the same relevant cyclotomic extension
Gal(Q(µd)/Q) for d determined by G, it can happen that the b-constants are different! Thirdly,
when Gal(Q(µd)/Q) are the same, it seems that there exist more field extensions on function
field side.

We now demonstrate the reasoning behind the example and the last comment more carefully.
Given a finite group G and G/N a quotient group, the study of whether a particular G/N -
extension can be embedded to a G-extension is called embedding problem. It is a study with
rich history and theory, and historically play a central role in solving inverse Galois problem
for solvable groups. A particular embedding problem becomes necessary in studying b(G, k) in
Conjecture 1: given a fixed cyclotomic extension, i.e., k(µn) with Gal(k(µn)/k) being a quotient
of G, can k(µn) be embedded into a G-extension. We formulate precisely the following question:

Question 1.2 (Embedding Cyclotomic Extensions). Let Q be a global field. Given a surjective
group homomorphism π : G → B and a cyclotomic B-extension F/Q (equivalently a surjective
continous group homomorphism φ : GQ → B that factors through), does there exists a surjective
φ̃ : GQ → G such that φ̃ ◦ π = φ?

GQ

0 Ker(π) G B 0

φ̃
φ

π

In Example 1.1, we can easily see that an C4-extension cannot contain Q(µ3) because one
encounter both local obstructions at p = 3 and p = ∞. It seems quite difficult to solve this
problem in full generality. We will discuss some cases in Section 4, which suffices for proving
the following theorem, giving an infinite family of examples where b(G,Q) is bounded between
bT (G,Q) and bM (G,Q).

Theorem 1.3. Let ` be an odd prime number and d =
∏
i p
ri
i 6= 2 where pi are all prime

numbers. Let G = C` o Cd ⊂ S`d with (|G|, ch(Q)) = 1, Gal(Fq(t)(µ`)/Fq(t)) = Gal(Q(µ`)/Q)

and q large enough comparing to G. Denote gcd(d, `− 1) =
∏
i p
si
i . Let s = val2(`− 1)− 1 when

val2(d) > val2(`− 1) and s = 0 otherwise. Then

bT (G,Q) = b(G,Fq(t)) =
∏
i

psii , b(G,Q) =
∏

i,ri=si

psii · 2
s, bM (G,Q) = 1.
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In particular, there exists G ⊂ Sn such that Gal(Fq(t)(µ`)/Fq(t)) = Gal(Q(µ`)/Q) and b(G,Fq(t)) >
b(G,Q).

We exclude d = 2 only because b(G,Q) is not proved over number fields currently due to the
lack of good `-torsion bound. One can construct more examples along this line, either in wreath
product or non-wreath product. We don’t try to expand in that direction here. Theorem 1.3
provides family of infinite examples that are simple as groups, and also indicates the robustness
in the comments we make after Example 1.1. Therefore we make the following conjecture:

Conjecture 4. Let k be a number field. Then for any transitive permutation group G, we have

bM (G, k) ≤ b(G, k) ≤ bT (G, k). (1.4)

It is worth mentioning that at this moment, the issue from embedding problem in Türkelli’s
modification seems to only exist for number fields. We are not aware of any counterexamples
over function fields, either for Conjecture 3 or Problem 1.2. Given Theorem 4.1, it seems to be
plausible to expect we don’t have such failures for Problem 1.2 over function field. Though a
positive answer in full generality seems to be difficult to prove.

1.3 General Invariants

Malle’s conjecture is also interesting because of its connection to other asymptotic ques-
tions. In fact, field enumeration naturally occurs when one studies statistical questions for all
G-extensions as a family. For example, it is exactly the denominator appearing in Cohen-Lenstra
type heuristics. Choosing the ordering for field enumeration is important from this perspective.
It has been noticed that ordering field by discriminants does not always produce the predicted
average number from Cohen-Martinet heuristics , e.g. G = Z/4Z [BLJ20]. In fact, this phenom-
ena already exists for G = D4 in [CyDO02] and Klüners examples of wreath product [Klü05a].
To avoid such problems, people have worked in the past with conductor or product of ramified
primes [Woo10, ASVW21]. It is suggested first in [Woo10] to use product of ramified primes
as the counting invariant and is conjectured by [BLJ20] that it is always good for the purpose
of Cohen-Lenstra heuristics, and is actually used [LWZB19] on Cohen-Lenstra heuristics over
function fields for general Galois groups. With notations introduced in 2, it naturally extends
Conjecture 1, Conjecture 2 and Conjecture 3 (with all counterexamples carried over):

Conjecture 5 (Generalized Malle’s Conjecture). Given a global function field Q and a transitive
permutation group G ⊂ Sn with (|G|, ch(Q)) = 1. Let inv be a counting invariant(see Definition
2.1). Then there exists positive constants a(Ginv) ∈ Z and b(Ginv, Q) ∈ Z such that

NQ(Ginv, X) = Θ(X1/a(Ginv) lnb(G
inv,Q)−1X),

where b(Ginv, Q) = bM (Ginv, Q) (replace Θ with ∼ when Q is number field). Similarly bT (Ginv)

given in 2 is the analogue of Türkelli’s modified constant.

The reason for aforementioned issue is very often concluded to be the following group theoretic
reason. In the upcoming paper of the author with Alberts, Lemke-Oliver and Wood, we define
concentrated groups, to capture this feature:

Definition 1.4 (Concentrated Group, [AOWW24]). We say a transitive permutation group
G ⊂ Sn is concentrated, or concentrated in N , if there exists a proper normal subgroup N such
that

〈g | ind(g) = min
g 6=e

ind(g)〉 ⊂ N, (1.5)

4



(see definition of ind(·) in Definition 2.2). More generally, given an counting invariant f (see
Definition 2.1), we say G is concentrated in N with respect to f if 〈g | f(g) = ming 6=e f(g)〉 ⊂ N .

If G is concentrated with respect to discriminant or some other invariants, then the number of G-
extensions with a fixed G/N -quotient is expected to be positive density among all G-extensions.
In fact, this is exactly why the method in Alberts-Lemke-Oliver-Wang-Wood [AOWW24] is so
effective in proving many more cases of Malle’s conjecture when G is concentrated. We term
this phenomena on the field counting side by

Definition 1.5 (Big Fiber). Let F(Ginv, X) be the number of G-extensions K with inv(K) ≤ X.
We say a field counting question Ginv over base field Q has a big fiber over M if there exists a
nontrivial field extension M 6= Q such that

lim inf
X→∞

]{K ∈ F(Ginv, X) |M ⊂ K̃}
]{K ∈ F(Ginv, X)}

> 0. (1.6)

It is very tempting to imagine that G being concentrated is equivalent to the existence of
big fiber(s) in counting G-extensions (with respect to any invariant), or even stronger, that G
being non-concentrated is equivalent to guarantee a good constant like an Euler product, which
suggests good independence among different p. Unfortunately, both hopes are not true. In fact,
even for G = S3, the field counting question Srad

3 with product of ramified primes is already
proven by [ST24] to have one big fiber over Q(µ3), even though S3 is not concentrated with
respect to product of ramified primes, not to mention the constant being one Euler product!

It is exactly for the same reason for Klüners to get his counter examples and for Srad
3 to have

one big fiber. It is then very natural to push this reasoning further to get counterexamples for
Conjecture 5 for general non-concentrated invariants.

Denoting bM (Grad, Q) to be the b-constant appearing in Conjecture 5 for countingG-extensions
by the product of ramified primes, we show that actually the original counter example of Klüners
are already counterexamples for Conjecture 5.

Theorem 1.6. Let ` be an odd prime and G = C` o C`−1. When ` ≥ 5, we have

b(Grad,Q) > bM (Grad,Q).

In fact, the lower bound is exactly established from counting G-extensions containing the Q(µ`).
We also show the same phenomena to hold for other groups G = C` o Cm with m|` − 1 among
Klüners’ counterexamples, see Lemma 3.3.

We make a couple comments on these examples. Firstly, though it seems surprisingly simple,
somehow it has been ignored by experts, see [KP23]. Secondly as it can be seen, such a problem
does not require subtle constraints on the underlying group structure of G. To indicate this in
contrast to nilpotent examples in [KP23], we also give a convenient infinite family of nilpotent
examples.

Theorem 1.7. Let ` be an odd prime and G = C`2 o C`. When ` ≥ 3, we have

b(Grad,Q) > bM (Grad,Q). (1.7)

Thirdly, so far Theorem 1.6 and Theorem 1.7 only takes advantage that bM (Grad,Q) < bT (Grad,Q)

(as well as examples in [KP23]), we also expect counterexamples towards bT (Grad,Q) following
the same spirit of Theorem 1.3 in Example 3.5. Finally these examples show that there doesn’t
seem to exist a unifying invariants, discriminant or product of ramified primes, that solves all
the trouble once and for all.
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1.4 A New Proposal

Now in retrospect of both types of examples represented, the intermediate subfield contain-
ing/not containing roots of unity can affect b constants easily from different mechanisms. We
don’t try to design any invariant to suppress the influence from roots of unity. The solution
we propose in the following is a refined version of Malle’s conjecture with general invariants
following the exact spirit from global function fields, where G-extensions with particular fixed
constant extensions are naturally grouped together. Here we split up NQ(Ginv, X) to a finite set
of subquestions according to the intersection of G-extensions with relevant cyclotomic extensions:

Conjecture 6 (Refined Malle’s Conjecture). Let G ⊂ Sn be a finite group, Q a global field with
(|G|, ch(Q)) = 1. Let d = lcmexp(g)=exp(G) ord(g). For any cyclotomic subfield F ⊂ Q(µd) with
Gal(F/k) = B and a surjection π : G → B, we define NQ,π,φ(Ginv, X) to be the number of
continuous surjective liftings φ̃ such that:

• it makes the diagram commute:

GQ

0 Ker(π) G B 0

φ̃
φ

π

• the fixed field K(φ̃) associated to φ̃ satisfying K(φ̃) ∩Q(µd) = F

• inv(K(φ̃)) ≤ X

We conjecture that either the above embedding problem is not solvable and NQ,π,φ(Ginv, X) = 0

or
NQ,π,φ(Ginv, X) = Θ(X1/a(π,φ) lnb(π,φ)−1X), (1.8)

(when Q is the number field, replace Θ with ∼) where

a(π, φ) := min{exp(g) | g ∈ Ker(π)}, b(π, φ) := |Cmin(N inv)/GQ| = bφ(Ginv,Ker(π), Q),

(1.9)
where Cmin(N inv) is the set of conjugacy classes of Ker(π) with exp(g) = a(π, φ) and GQ acts
on it via the φ-twisted action, i.e. σ(Cg) = σ−1 · Cχcyc(σ)g · σ.

It then follows as a consequence of Conjecture 6, that

Conjecture 7. Given a transitive permutation group G ⊂ Sn and a number field k. Denote
d = lcmg,ind(g)=ind(G) ord(g). We conjecture that

b(G, k) = max
ind(N)=ind(G)

max
φ

bφ(G,Ker(φ) = N, k), (1.10)

where φ ranges over the finitely many continuous surjective maps φ : Gk → G/N such that: 1)
φ exactly cut out a cyclotomic subfield F ⊂ k(µd); 2) φ can be lifted to φ̃ in 6

Comparing with Theorem 2.12, we now have one more condition about the lifting property of
φ. It is not entirely clear that we have realized all issues for understanding the b-constants. At
the very least, we formulate Conjecture 6 to emphasize the importance of the counting function
NQ,π,φ(Ginv, X), which is the exact analogue of Türkelli’s context in global function fields. We
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mention that NQ,π,φ(G,X) is brought up for nilpotent extensions with discriminant [KP23,
Conjecture 5.1] without noticing the issue of lifting property.

Finally, we give the organization of this paper. In Section 2, we discuss predictions of b(G,Q)

in all situations. In particular, we give a simplified definition of bT (G,Q) in Theorem 2.12. In
Section 3, we verify b(G,Q) in all examples we listed in Theorem 1.3, Theorem 1.6 and Theorem
1.7. This includes computing the predictions from the group theoretic side and carrying over
inductive argument to prove the true b. We also discuss the differences for counting function
field and number fields. In Section 4, we discuss the difference of Problem 1.2 over function fields
and number fields, and give the explicit criteria when G is solvable and G is abelian respectively.

2 Description of b(G, k)

In this section, we give a precise description of Malle’s prediction bM (G, k) and Türkelli’s
modifiction bT (G, k). Although the original conjecture of Malle and Türkelli are both made only
discriminant, for efficiency in discussing all theorems together, we define them with respect to
general invariants once for all.

Following the spirit in [Woo10, Section 2.1], we give the following definition:

Definition 2.1 (Counting Invariant). Let G ⊂ Sn be a finite permutation group and C(G) be the
set of conjugacy classes of G. Let Q be a global field. Let exp : C(G)\{e} → Z>0 be a function
where exp(g) = exp(gk) for any k that is relatively prime to ord(g). For each place v||G| ·∞, we
define expv : Σv → Z≥0 where Σv is the set of continuous group homomorphisms ρv : GQv →
G ⊂ Sn (up to conjugation in Sn). Then for each G-extension K/Q with Gal(K/Q) ' G ⊂ Sn,
equivalently given by a continuous surjective group homomorphism ρK : GQ → G, we define the
counting invariant for K associated to f and fv to be an integer denoted by inv(K):

inv(K) =
∏
v||G|

|v|expv(ρv)
∏
v|∞

expv(ρv)
∏
v-|G|

|v|exp(yv), (2.1)

where yv is any tame inertia generator at v in Gal(K/Q).

For a general invariant inv, we use Ginv to denote the counting question with inv and
Nk(Ginv, X) to denote the counting function. For example, Grad denotes the counting ques-
tion with radical of discriminant. When we do not specify the invariant, our counting invariant
for G ⊂ Sn is the usual discriminant.

2.1 Malle’s constant bM(G, k)

We first describe the a(G) constant in Conjecture 1.

Definition 2.2 (Index). Given a transitive permutation group G ⊂ Sn, we define the index for
g 6= e ∈ G ⊂ Sn to be

ind(g) := n− ]{cycles of g}.

Since conjugation does not change the cycle type in Sn, it is well-defined that the conjugacy class
Cg associated to g has

ind(Cg) := ind(g).

Then index of G is defined as
ind(G) := min

g 6=e
ind(g).
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The integer a(G) is exactly ind(G). Notice that ind(·) is exactly the function exp(·) when the
counting invariant inv is discrminant, we in general define

a(Ginv) := min
g 6=e

exp(g). (2.2)

We denote Cmin(Ginv) to be the set of conjugacy classes C of G with minimal exp(C). We
now define the cyclotomic action from the absolute Galois group GQ on G (the definition of the
action does not require the set is Cmin(Ginv))

Definition 2.3 (Cyclotomic Action). Given any field Q, the cyclotomic character is the canon-
ical homomorphism

χcyc : Gal(Qsep/Q)→ Aut(µ∞) ⊂ Ẑ× = lim←−
n

(Z/nZ)×.

We define the cyclotomic action of GQ on a finite group G as σ(g) = gχcyc(σ).

Notice that since G is finite, gχcyc(σ) only depends on the image χcyc(σ) in Z/|G|Z. More
concretely, denote d = |G|, it suffices to consider the image of GQ into (Z/dZ)×. If σ ∈ GQ
maps σ(µd) = µad, then σ(g) = ga. And one can check σ(Cg) = Cga is well-defined. In fact if
a certain group element g ∈ G has order m, then the action of σ ∈ Gal(Qsep/Q) on Cg can be
already computed as C(gχcyc(σ)) via its image in (Z/mZ)× already.

Remark 2.4. Notice that the action factors through Gal(Q(µd)/Q) where d = lcmg∈Cmin(Ginv) ord(g).
This means that the base field dependence in bM (Ginv, Q) only depends on Gal(Q(µd)/Q) ⊂
(Z/dZ)×.

We now define
bM (Ginv, Q) := |Cmin(Ginv)/Gal(Qsep/Q)|, (2.3)

under the cyclotomic action from Gal(Qsep/Q). Malle in [Mal04] conjectures that for number
fieldsQ, we have bM (G,Q) = b(G,Q) whereG stands for the natural discriminant as the counting
invariant. We now demonstrate the computation via the following example. It is also stated in
[Klü12].

Example 2.5 (Wreath Product). Let G = T o B ⊂ Stb be the wreath product as a permutation
group, where T ⊂ St and B ⊂ Sb. Since ind((t1, · · · , tb) o b) ≥ ind((t1, · · · , tb) o e), we see
ind(G) = ind((t, e, · · · , e))oe where ind(t) = ind(T ). It is now easy to see that the only elements
with this index is exactly in such a form. Therefore ind(G) = ind(T ) and Cmin(G) has a bijection
with Cmin(T ). Moreover the action from Gal(Qsep/Q) is identical. Thus bM (G,Q) = bM (T,Q).

Given the fact that the Galois group of a relative T -extension over a B-extension has Galois
group embedded into T oB, this example immediately implies that Conjecture 1 cannot be true
in general, since it is not consistent with itself since the total counting of all permutation Galois
groups that arises as a relative T -extension over a B-extension can add up to be smaller than
the number of relative T -extensions for a fixed cyclotomic B-extensions.

2.2 Türkelli’s constant bT (G, k)

In this section, we revisit Türkelli’s modification on Malle’s constant b in [Tür15]. This is of
crucial importance, since it is often not interpreted correctly. We also give a simplified form of
it in Theorem 2.12.
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Let G be a transitive permutation group and N ⊂ G a normal subgroup and Q a global
field. For each continuous group homomorphism φ : GQ → B := G/N , we recall the φ-twisted
cyclotomic action:

Definition 2.6 (φ-twisted cyclotomic action). Fix N ⊂ G and φ : GQ → B = G/N . For each
conjugacy class Cn in N and σ ∈ GQ, let σ̄ be any lift of φ(σ) ∈ B in G. We define the φ-twisted
cyclotomic action of GQ on conjugacy classes of N as:

σ(Cn) = σ̄−1 · Cnχcyc(σ) · σ̄.

The action on conjugacy classes does not depend on the choice of σ̄.

Notice that unlike the cyclotomic action, such an action can only be defined on conjugacy classes
of N instead of N , due to non-uniqueness of choice of σ̄. This action is only defined in [Tür15]
for abelian and cyclotomic φ, i.e., φ factor through GQcyc → B where Qcyc is the cyclotomic
closure of Q.

Now fix a counting invariant inv for G ⊂ Sn and let exp(G) := ming 6=e exp(g). We can
naturally extend exp to any normal subgroup N ⊂ G, and define exp(N) := minn 6=e exp(n), and

Cmin(N inv) := {conjugacy class C ⊂ N(conjugation in N) | exp(C) = exp(N)}.

Be careful that here we are taking conjugacy classes of N with the conjugation only coming from
N but not G. We then define for each φ that

bφ(Ginv, N,Q) := |Cmin(N inv)/GQ|. (2.4)

Remark 2.7. In [Tür15] this definition of b-constants is only stated for φ corresponding to
abelian extensions. We follow [Alb22] to define it for general φ. In [Alb22] this particular
bφ(G,N) is conjectured to describe the asymptotic distribution for general N -torsors over a fixed
φ. This is how we should think about it morally. It is justified with a heuristic argument similarly
like how Malle’s original conjecture is justified. It is also verified to be the correct b when N is
abelian, parallel to that Malle’s original conjecture also holds for all abelian extensions. However
Klüners’ counterexample still stands as counterexamples for these more general conjectures.

With this notation Türkelli defines that if Sur(GQcyc , G/N) is non-empty then

b(Ginv, N,Q) := max
φ∈Sur(GQcyc ,G/N)

bφ(Ginv, N,Q), (2.5)

and otherwise b(Ginv, N,Q) = 0.

Definition 2.8 (Türkelli’s Modified b). Given a global field Q and Ginv,

bT (Ginv, Q) := max
N/G,exp(N)=exp(G)

b(Ginv, N,Q). (2.6)

For inv = disc, we have

bT (G,Q) := max
N/G,ind(N)=ind(G)

b(G,N,Q). (2.7)

We remark that Türkelli [Tür15] only formulates his conjecture for discriminant. We take the
liberty of calling it bT for general invariants, with the same spirit carried over.

We make two comments. Firstly, it is clear that b(Ginv, G,Q) = bM (Ginv, Q) when N = G,
therefore
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Lemma 2.9. Given G ⊂ Sn and global field Q, it always holds that

bM (G,Q) ≤ bT (G,Q). (2.8)

This also holds for general counting invariant inv.

Secondly, over function field Qcyc is simply Q · F̄p which is cyclic, however over number fields
Qcyc is not, in fact it is countably many generated over any number field. This means that
determining bT (G,Q) involves checking for infinite many φ for number fields but finitely many
for function fields. Therefore we make the following simplification for number field.

We first give an alternative definition for bφ(Ginv, N,Q). Given φ : GQ → G/N surjective,
denote Q(φ)/Q to be the corresponding G/N -extension. Let d := lcmn∈Cmin(N inv) ord(n). We
now define the finite group

G̃ := G×Gal(Q(φ)∩Q(µd)/Q) Gal(Q(µd)/Q))

where the fibering map is defined to be the natural quotient. Under the fiber product notation,
(x, y) ∈ G iff x̄ = ȳ ∈ Gal(Q(φ) ∩ Q(µd)/Q). We now define the action of G̃ on Smin(N inv) :=

{n ∈ N | exp(n) = exp(N)}:
(x, y) · n = x−1 · nχcyc(y) · x.

Notice that Smin(N inv)/(N×e ⊂ G̃) = Cmin(N inv), and for any group actionX/G = (X/N)/(G/N),
we thus obtain:

Lemma 2.10. Given N ⊂ G ⊂ Sn, φ : GQ → G/N where Q is any global field, and any
counting invariant inv,

bφ(Ginv, N,Q) = |Smin(N inv)/G̃|. (2.9)

Now we can compare bφ(Ginv, N,Q) among different φ, even different N .

Lemma 2.11. Given G ⊂ Sn, Q any global field, and any counting invariant inv. Let Ni,
i = 1, 2 be two normal subgroups of G with exp(Ni) = exp(G).
1) If X := {g ∈ G | exp(g) = exp(G)} ∩ N1 = {g ∈ G | exp(g) = exp(G)} ∩ N2 6= ∅.
Let d = lcmn∈X ord(n). Given two surjections φi : GQ → G/Ni. If the corresponding G/Ni-
extension Q(φi) has (Q(φ1) ∩Q(µd)) ⊂ (Q(φ2) ∩Q(µd)), then

bφ1(Ginv, N1, Q) ≤ bφ2(Ginv, N2, Q), (2.10)

with the equality happens if the field inclusion is equality.
2) If N1 ⊂ N2, let d = lcm{ord(g) | exp(g) = exp(G)}. If the surjective homomorphisms
φi : GQ → G/Ni satisfy that Q(φ1) ∩Q(µd) = Q(φ2), then

bφ1
(Ginv, N1, Q) ≤ bφ2

(Ginv, N2, Q). (2.11)

with the equality happens if {g ∈ G | exp(g) = exp(G)} ∩N1 = {g ∈ G | exp(g) = exp(G)} ∩N2.

Proof. With (Q(φ1) ∩ Q(µd)) ⊂ (Q(φ2) ∩ Q(µd)), we obtain a natural embedding G̃2 → G̃1:
using the fiber product notation, (x, y) ∈ G̃2 with x̄ = ȳ ∈ Gal(Q(φ2) ∩ Q(µd)) always satisfy
x̄ = ȳ ∈ Gal(Q(φ1) ∩Q(µd)). The action of (x, y) remains the same and the set X being acted
is the same. Therefore the number of orbits with G̃2 is greater or equal. Therefore we prove
the first statement. Reversing φ1 and φ2 implies we obtain equality when the field inclusion is
equality.

For the second statement, It is clear from the above argument that G̃1 = G̃2, and the minimal
exponent element is clearly a bigger set for N2.
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Applying Lemma 2.11, we give the following simplification of computing Türkelli’s constant:

Theorem 2.12. Given G ⊂ Sn, Q a global field, and d = lcm{ord(g) | exp(g) = exp(G)}. We
have the following equality:

bT (Ginv, Q) = max
N,exp(N)=exp(G)

max
φ

bφ(Ginv, N,Q), (2.12)

where the maximum is taken among φ : GQ → G/N that is surjective and factors through
Gal(Q(µd)/Q), that is, exactly cut out subfield of Q(µd)/Q.

Proof. By taking N1 = N2 = N in the first statement of Lemma 2.11, we observe now that it
suffices to take φ with Q(φ) with maximal Q(φ) ∩ Q(µd) ⊂ Q(µd)/Q for any fixed N . Then it
follows from the second statment, if the maximal Q(φ) (not necessarily unique) from last step
satisfies Q(φ)∩Q(µd) 6= Q(φ), it suffices to check the natural quotient φ̄ where Q(φ̄) corresponds
to the Q(φ) ∩Q(µd).

Notice that given Q(µd)/Q being finite, it is now a finite checking with φ exactly corresponding
to subfields of Q(µd).

There is no general comparison for bφ(Ginv, N,Q) in Theorem 2.12, see Example ?? and
Example 3.5.

3 Computation of b(G,Q)

In this section, we verify various b-constants in Conjecture 1, Conjecture 3, Conjecture 5 and
the true value.

3.1 Group Constant Computation

In this section, we give the group theoretic computation of predictions for b-constants from
Malle and Türkelli.

We first give the computation towards showing Theorem 1.3.

Lemma 3.1. Let ` be an odd prime number and d =
∏
i p
ri
i where pi are all prime numbers.

Let G = C` o Cd ⊂ S`d and gcd(q, |G|) = 1. If gcd(d, `− 1) =
∏
i p
si
i then

bT (G,Q) = gcd(d, `− 1) bM (G,Q) = 1.

Proof. By Example 2.5, we have bM (G,Q) = bM (C`,Q) = 1. We now compute bT (G,Q). Firstly,
we only need to consider those N ⊃ Cd` , since C

d
` is normally generated by any minimal index

element. By Theorem 2.12 and Lemma 2.11, it suffices to consider φ : GQ → Z/ gcd(d, ` −
1)Z correspond to the unique subfield of Q(µ`) with degree gcd(d, ` − 1). We now compute
bφ(G,N,Q). It is easy to count that |Cmin(N)| = (` − 1) gcd(d, ` − 1). The action from GQ
factors through Z/ gcdZ, therefore it is enough to consider the action from the generator of
Z/ gcdZ. The orbit length for each class is exactly ` − 1, therefore the number of orbits is
exactly gcd(d, `− 1).

Remark 3.2. We remark that by a simple group theoretic consideration: in Lemma 3.3

bφ(C`−1` , C` o C`−1) = bM (C`, Fφ), (3.1)

and in Lemma 3.4,
bφ(C`

2

C`
, Grad,Q) = bM (Crad

`2 , Fφ). (3.2)
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We next give the computation towards showing Theorem 1.6

Lemma 3.3. Let ` be an odd prime and m|`− 1 with m > 2, G = C` oCm and N = Cm` . Let φ
corresponds to the unique Cm subfield contained in Q(µ`). We then have

bφ(Grad, N,Q)� bM (Grad,Q). (3.3)

For m = `− 1 and ` ≥ 5,
bφ(Grad, N,Q) > bM (Grad,Q). (3.4)

Proof. The conjugacy classes of C` o C`−1 come in two types: contained in N and outside of
N . Within N , the class represented by (a1, · · · , a`−1) o e contains all rotations of ai, i.e. ,
(ai, ai+1, · · · , a`−1, a1, · · · , ai−1)oe for certain i. OutsideN , we have (a1, · · · , a`−1)oσ conjugate
to (b1, · · · , b`−1) o τ if and only if τ = σ and

∑
i ai =

∑
i bi.

We first compute bM (Grad,Q). We first count the number of GQ-orbits within N . Notice
that the conjugation of G on N purely comes from G/N = C`−1 and all nontrivial elements in N
have order `, it then suffices to count the orbits for G/N ×Gal(Q(µ`)/Q) acting on X = N\{e}
where (x, y) · n = x · nχcyc(y) · x−1. By Burnside’s Lemma, the number of orbits is

|X/(G/N ×Gal(Q(µ`)/Q))| = 1

|C`−1 × C×` |
∑

g∈C`−1×C×`

|Xg|, (3.5)

Let g = (r, s), then Xg corresponds to the non-trivial eigenvectors of r with eigenvalue s. If r
generates C`−1, then as a linear operator r satisfies r`−1 − 1 =

∏
λ∈F×`

(r − λ) = 0, which shows
that every scalar is an eigenvalue and each eigenvalue has 1-dim eigenspace. Thus we compute
that |Xg| for (r, s) is ` − 1 for this case. Similarly, when r has order smaller than ` − 1, the
operator r has (`− 1)/ ord(r) identical invariant spaces with dimension ord(r), within which all
ord(r)-th roots of unity in F×` are eigenvalues with 1-dim eigenspace. Therefore if sord(r) = 1,
we obtain |Xg| = `(`−1)/ ord(r) − 1. Now we compute the number of orbits within N is

1

(`− 1)2

∑
r∈C`−1

ord(r) ·
(
`(`−1)/ ord(r) − 1

)
≤ 1

(`− 1)2

(
``−1 − 1 + (`− 2)(`− 1) · `(`−1)/2

)
, (3.6)

with the leading term comes from g = e. Notice the total number of classes outside N is (`−2)·`,
we then have

bM (Grad,Q) ≤ 1

(`− 1)2

(
``−1 − 1

)
+
`− 2

`− 1
· `(`−1)/2 + (`− 2) · `. (3.7)

Now we compute bφ(Grad, N,Q) where φ : GQ → C`−1 corresponds to Q(µ`)/Q. By Lemma
2.10, it suffices to consider Gal(Q(µ`)/Q) acts on X = N\{e} via the φ-twisted action, i.e.,
x · n = x · nχcyc(x) · x−1. By Burnside’s Lemma, the number of orbits is only the sum over (r, r)

in previous computation:

bφ(Grad, N,Q) =
1

`− 1

∑
r∈C`−1

(
`(`−1)/ ord(r) − 1

)
≥ |X

e|+ (`− 2)(`− 1)

`− 1
=
``−1 − 1

`− 1
+ (`− 2).

(3.8)
It is checked that when ` is large enough (i.e. ` ≥ 5) we have

bφ(N,Grad,Q) > bM (Grad,Q).

For m|` − 1 and G = C` o Cm, we can similarly compute bM (Grad,Q) and bφ(Grad, N,Q)

where φ : GQ → Cm corresponds to the unique Cm quotient of Q(µ`). The number of conjugacy
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classes outside N is (m− 1) · `. For elements inside N , we consider Cm ×Gal(Q(µ`)/Q) acting
on X = N\e to determine its contribution to bM (Grad,Q). Thus by Burnside’s Lemma, we have

bM (Grad,Q) ≤ (m−1)·`+ 1

(`− 1)m

∑
r∈Cm

ord(r)·(`m/ ord(r)−1) ≤ `m − 1

(`− 1)m
+
m− 1

`− 1
·`m/2+(m−1)·`.

(3.9)
To compute bφ(Grad, N,Q), it suffices to consider Gal(Q(µ`)/Q) acting on the same set X with
the same action that x · n = x · nχcyc(x) · x−1. The orbit number is at least

bφ(Grad, N,Q) =
1

`− 1

∑
r∈Cm

(
`m/ ord(r)−1

)
≥ `m − 1

`− 1
+
m− 1

`− 1
·(`−1) =

`m − 1

`− 1
+(m−1). (3.10)

Therefore for m > 2, we have bφ(Grad, N,Q)� bM (Grad,Q).

We finally give the computation towards showing Theorem 1.7.

Lemma 3.4. Let ` be an odd prime, G = C`2 o C` and N = C``2 . For ` ≥ 3, and φ corresponds
to the unique C`-extension only ramified at ` over Q, we have

bφ(N,Grad,Q) > bM (Grad,Q).

Proof. Similarly with Lemma 3.3, there are two types of conjugacy classes of C`2 o C`. The
description of these classes also follow exactly the same rule. We focus on those contained in N ,
since the number of conjugacy classes outside N is bounded from above by (`− 1)`2.

We first compute bM (Grad,Q). The cyclotomic action from GQ on conjugacy classes within
N is from Gal(Q(µ2)/Q). We apply Burnside’s Lemma where X = C``2\{e} acted by C` ×
Gal(Q(µ2)/Q). The action from C` is rotation and the action from Gal(Q(µ2)/Q) ' C×`2 is
scalar multiplication. We have |Xe| = `2`−1. If r = 0 then for g = (r, s) we have |Xg| = ``−1 if
s ≡ 1 mod ` and |Xg| = 0 if not. If r 6= 0 generates C` and s = 1, then Xg are all the constant
vectors, therefore |Xg| = `2 − 1. If r 6= 0 and s 6= 0, then Xg contains scalar multiplications of
(1, s, · · · , s`−1) if s` = 1 (i.e., s ≡ 1 mod `) and Xg is empty if s` 6= 1. Therefore summing up
all terms, we obtain that the number of orbits within N is

1

`2(`− 1)

(
`2` − 1 + ` · (`` − 1) + (`− 1) · ` · (`2 − 1)

)
. (3.11)

Now we compute bφ(N,Grad,Q) where φ : GQ → C` be corresponding to the unique degree
` sub-extension F/Q in Q(µ2)/Q. To count the number of orbits with Burnside’s Lemma, we
have X = N\{e} acted by Gal(Q(µ2)/Q). Notice that the number of orbits is at least

|Xe|
`(`− 1)

=
`2` − 1

`(`− 1)
. (3.12)

When ` ≥ 3, we have
bφ(N,Grad,Q) > bM (Grad,Q).

In addition to the computation towards b in all the theorems, we also make a computation
to show that aside from Lemma 2.11, we probably should not expect any general comparison
of b-constant corresponding to different φ, since the group G̃ and the set N\e become bigger or
smaller as the same time.

Next we give another example where we expect bT (Grad,Q) to be incorrect as well, similarly
for the reason 1.3 and 4.3:
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Example 3.5. Let G = C3 o C4. We have for Grad that

• Q(i): bφ(Grad, N,Q) = 17,

• Q(
√

3): bφ(Grad, N,Q) = 17,

• Q(µ3): bφ(Grad, N,Q) = 29,

• Q: bφ(Grad, N,Q) = 19.

Therefore
bT (Grad,Q) = 29, bM (Grad,Q) = 19.

By Conjecture 6, we expect b(Grad,Q) = bM (Grad,Q), since both Q(µ3), Q(i) and Q(
√

3) cannot
be embedded to a C4-extension.

3.2 Field Counting: Number Fields

In this subsection, we give statements on b(G,Q) and b(Grad,Q) in Theorem 1.3, Theorem
1.6 and Theorem 1.7.

Lemma 3.6. Let ` be an odd prime number and d =
∏
i p
ri
i 6= 2 where pi are all prime numbers.

Let G = C` oCd ⊂ S`d and gcd(q, |G|) = 1. Denote gcd(d, `−1) =
∏
i p
si
i . Let s = val2(`−1)−1

when val2(d) > val2(`− 1) and s = 0 otherwise. Then

b(G,Q) =
∏

i,ri=si

psii · 2
s.

Proof of Theorem 1.3, over Q. By [AOWW24, Corollary 1.6] for d > 2 and G = C` o Cd the
inequality is satisfied as

1

2
+

p

d(p− 1)
<

`

`− 1
,

where p is the minimal prime divisor of d. Then we have

b(G,Q) = max
F/Q,Gal(F/Q)=Cd

b(C`, F ). (3.13)

For G = C`, by [Wri89], b(F,C`) = bM (F,C`) = [F ∩Q(µ`) : Q].
Recall the notation gcd(d, ` − 1) =

∏
i p
si
i and d =

∏
i p
ri
i 6= 2, and denote ` − 1 =

∏
i p
ui
i ,

that is, si = min{ri, ui}. Since Q(µ`) is cyclic over Q, for each n| gcd(d, ` − 1), there exists a
unique cyclotomic subfield M = Mn ⊂ Q(µ`) that is only ramified at ` with degree n over Q.
Given n =

∏
i p
ti
i with 0 ≤ ti ≤ si, it follows from Theorem 4.3 that Mn can be embedded into a

Cd-extension if and only if 1) ` ≡ 1 mod prii for each pi|n, and 2) ifMn is totally imaginary, then
val2(d) = val2(n). Notice that ` ≡ 1 mod puii , the first condition amounts to saying that ui ≥ ri
whenever ti > 0, equivalently, si = ri. For the second condition, Mn is totally imaginary iff
n - (`−1)/2 iff val2(n) = val2(`−1). Thus in this case, we require val2(d) = val2(n) = val2(`−1),
i.e., ri = ti = ui. Therefore the maximal n where Mn can be embedded into a Cd-extension
can be described by specifying ti: at odd primes, if ui ≥ ri (i.e., ri = si), then let ti = si = ri,
otherwise 0; at p = 2, if ri = ui, then we let ti = ri = ui = si, if ri < ui, then we let ti = si = ri,
if ri > ui, then we let ti = si−1 = ui−1. It then follows that b(T,Q) is this particular n, which
is
∏
ri=si

psii · 2s where s = val2(`− 1)− 1 only when val2(d) > val2(`− 1).

Next we compute a lower bound for b(Grad,Q) for G = C` o Cd and C`2 o C`.
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Lemma 3.7. For G = C` oCd ⊂ S`d with respect to N = Cd` and G = C`2 oC` ⊂ S`3 with respect
to N = C``2 . We show that

b(Grad,Q) ≥ bφ(Grad, N,Q).

Proof. By taking T = N , this can be translated to [AO21, Alb22] and choosing any π : GQ →
G such that its natural restriction π : GQ → G/N corresponds to the cyclotomic extension
F = Q(µ`) (respectively the unique C`-subfield F contained in Q(µ`2)). Since they are wreath
product, there exists G extensions containing F . We then obtain that the number of G-extension
containing F with rad < X has an asymptotic distribution with a(Ginv) = 1 and bφ(Grad, N,Q).
This gives a lower bound on b(Grad,Q) already.

3.3 Field Counting: Global Function Fields

Our main task in this section is to give a proof for the following lemma to prove Theorem
1.3:

Lemma 3.8. Let ` be an odd prime number and d =
∏
i p
ri
i 6= 2 where pi are all prime numbers.

Let G = C` o Cd ⊂ S`d and gcd(q, |G|) = 1, Gal(Fq(t)(µ`)/Fq(t)) = Gal(Q(µ`)/Q) and q large
enough comparing to G. Denote gcd(d, `− 1) =

∏
i p
si
i .

b(G,Fq(t)) = bT (G,Fq(t)) =
∏
i

psii .

Analogous with the number field setting, for each X, we denote NFq(t)(G,X) to be the
number of all G-extensions over Fq(t) with discriminant bounded by X. For us, in order to
complete parallel statements with number fields, the discriminant of a G-extension K/Fq(t) is
the product of local discriminant over all primes away from the chosen infinity place.

We point out a couple differences for counting extensions over global function fields, from
that over number fields. The first difference from Malle’s conjecture over number field is that, we
cannot state an asymptotic distribution for NFq(t)(G, q

m), since there might not exist extensions
with discriminant exactly qm. Combining the fact that all discriminant now is qm, a precise
asymptotic does not exist whenever we get the non-existence (e.g. G = C3 over Fq(t)), no
matter if we choose to count extensions with discriminant bounded by qm or exactly equal to
qm. Due to this reason, we state the corresponding Malle’s conjecture over function fields in
Conjecture 2 with Θ(·) instead of ∼.

Before we start the proof, we first give the following reformulation of Wright’s result [Wri89]
for abelian extensions when the abelian group A has (|A|, q) = 1. Notice that [Wri89, Theorem
I.3] only states certain weighted partial sum for abelian extensions. We now show it implies
Conjecture 2 for abelian group A.

Theorem 3.9. Conjecture 2 holds for abelian group A when (|A|, q) = 1.

Proof. Let Q be a global function field and aqm denotes the number of A-extensions over k with
discriminant exactly equal qm. Recall that Wright has proved the statement that

b−1∑
j=0

aqm+j · q−j/a ∼ C(qm)1/a · Pb−1(m) +O(qm)1/a−δ, (3.14)

where a = a(A) and b = bM (A,Q), and Pb−1 is a polynomial with degree b − 1 and δ > 0 is a
small positive number. Summing the equation from 1 to m and rearrange the terms, we obtain

NQ(A, qm)·(
∑
j

q−j/a)+
∑

1≤j≤b−1

∑
1≤k≤j

aqm+k ·q−(b−j)/a ∼ C
∑

1≤i≤m

(qi)1/a ·Pb−1(i)+O(qm)1/a−δ.

(3.15)
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Notice that the summation over i on the right hand side is also qm/a · P̃b−1(m) with P̃ a degree
b− 1 polynomial. It immediately follows that NQ(A, qm) ≤ C2q

m/amb−1 for some C2.
To see the lower bound, notice that

NQ(A, qm) · (
∑
j

q−j/a) ≥ C
∑

1≤i≤m−b+1

(qi)1/a · Pb−1(i) +O(qm)1/a−δ. (3.16)

which implies that there exists C1 such that

NQ(A, qm) ≥ C1q
m/amb−1. (3.17)

To determine b(G,Fq(t)) for G = C` o Cd ⊂ S`d, we follow the similar idea in [AOWW24].
The plan is to apply Theorem 3.9 to G = C` over any Cd-extension F/Fq(t). For each F and
corresponding φ, by Remark 3.2, we have bφ(Cd` , C` o Cd, k) = bM (C`, F ) = b(C`, F ). Therefore
it suffices to prove that: a)

b(G,Fq(t)) = max
F,Gal(F/Fq(t))=Cd

b(C`, F ), (3.18)

and b)
max

F,Gal(F/Fq(t))=Cd
b(C`, F ) = max

φ
bφ(C` o Cd, Cd` ,Fq(t)) = bT (G,Fq(t)), (3.19)

where φ varies over all GFq(t) → Cd. In (3.19), the first equality is tautological, and the second
equality follows from Theorem 4.1: indeed, all abelian quotient G/N with ind(N) = ind(G) must
contain N = Cd` , and if φ̄ with smaller quotient can be lifted to φ with Cd-quotient, then by
Lemma 2.11 case 1, it suffices to check all Cd-quotient. Theorem 4.1 and Theorem 4.3 forms the
second major difference of function fields over number fields: not every cyclotomic extension
can be embedded into a bigger cyclotomic extension over number field, but they always do over
function field. See Section 4 for more discussion. This is the main reason leading to the difference
of b-constants over function fields and number fields in this paper.

Finally, it remains to prove (3.18), that is, the analogue of the inductive argument in
[AOWW24] over function field. We sketch the idea as following. For each Cd-extension, we need
to count NF (C`, X over a general Cd-extension F/Fq(t) with the predicted a and b-constants, in
addition to an upper bound on NF (C`, F ) with a uniform dependence on Disc(F ) that is small.
Finally, adding up all NF (C`, X) with the uniform dependence to show the total counting satisfy
(3.18). We now point out a third interesting difference over function fields from number fields.
The uniform dependence on counting abelian extensions are exactly characterized by the size
of the `-torsion in class groups of F , which can be bounded by Disc(F )1/2−δ with different δ
depending on what Gal(F ) is. See [AOWW24] for relevant references. The `-torsion of the class
group for a function field F/Fq(t), instead of being bounded by Disc(F )δ for some fixed δ > 0,
has a trivial bound `2g where g is the genus and is linearly determined by the discriminant of
F via Riemann Hurwitz formula. When q becomes larger and larger, the trivial bound behaves
better and better and can be considered as bounded by Dε for arbitrary small ε, as long as q is
taken to be large enough with respect to ε. This leads to many more cases of Malle’s conjecture
being proved over function field.

Before we give the proof, let’s first give a summary of the class field theory over function
fields. For us, given a finite function field F/Fq(t), we obtain the ring of integers OF that
contains all elements that are integral over all finite places (not including the places above ∞),
which is the integral closure of Fq[t] inside F . We define the ideal class group of F to be the
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class group of the ring OF . It is a classical theorem that the ideal class group is also finite for
function fields. But unlike number fields, F can have many infinite unramified extension, which
is just the constant finite field extension. Relating the ideal class group with idéle class group
CF , we obtain the following∏

v O
×
v × F×∞ CF :=

∏′
v(F

×
v , O

×
v )× F×∞/F× ClF 0, .

We then have show that

Theorem 3.10. The ideal class group of a global function field is isomorphic to the Galois group
of the maximal abelian unramified extension that is split at all places above infinity.

On the other hand, by [Ros13, Proposition 14.1], with S = S∞, we can relate the class group to
the Jacobian of the curve CF corresponding to F via

Cl0F → ClF → Z/(d/i)Z→ 0, (3.20)

where d = gcdv|∞{deg(v)} and i = gcdv{deg(v)}, and Cl0F = Jac(CF )(Fq) is the Picard group.
This means that we can bound |ClF [`]| ≤ O(`2g) by the structure of Jacobian.

Lemma 3.11. For any finite function field F/Fq(t), we have |ClF [`]| ≤ O`(`2g).

Lemma 3.12. Let Q be a finite extension over Fq(t) and ` be a prime that is relatively prime
to q. We then have

NQ(C`, X) = O(C(`)2g)X1/a(C`) lnb(C`,Q)−1X,

where the constant C(`) only depends on `.

Proof. Denote a = a(C`) and b = b(C`, Q) for short in the proof. It follows from class field
theory over function field that

Nk(C`, q
m) ≤ O(`2g(k)) ·Hom≤X(

∏
v

O×v , C`),

where Hom(
∏
v O
×
v , C`) denotes the number of continuous homomorphisms from

∏
v O
×
v to C`

with bounded discriminant. It has a generating series which is usually called Malle-Bhargava
series. The series is an Euler-product and can be compared to standard zeta functions

f(s) :=
∏

|v|≡1 mod `

(1 + (`− 1)|v|−(`−1)s) = HQ(s) · ζQ(µ`)((`− 1)s)b(C`,F ). (3.21)

Here HQ(s) is a holomorphic factor that is uniformly converging at Re(s) > 1/a − ε for some
small ε > 0. Now letting u = q−s, we define g(u) = f(u(s)) =

∑
m amu

m. Since ζQ(µ`)(s) is
meromorphic except at its poles, and HQ(s) is holomorphic at Re(s) > 1/a − ε, the complex
function g(u) is holomorphic within the disc |u| < q−(1/(`−1)) and g(u)/um+1 is holomorphic
everywhere in the disc except at u = 0. We then have for small 0 < δ < ε that

2πi · am =

∫
|u|=q−1/(`−1)−δ

g(u)

um+1
du =

∫
|u|=q−1/(`−1)+δ

g(u)

um+1
du−

∑
u`−1
0 =q−1

Resu=u0

g(u)

um+1
, (3.22)

by shifting the contour integration from the smaller circle to the larger circle. The only possible
poles for f(s) with Re(s) > 1/a − ε are at s where qas = q, i.e., sk = 1/a + 2πi/a log q · k,
therefore the possible poles for g(u) are u(sk) = q−1/a · µka.
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We now estimate the terms in (3.22). The residue of g(u)/um+1 at u = u(sk) will serve as
the main term for am. (add −1 since C1 reversed direction in the second contour integral)∑

u`−1
0 =q−1

Resu=u0

g(u)

um+1
= (ln q)b

(m+ b− 1)!

(b− 1)!m!
u(s0)−m ·

∑
k mod a

Res(s = sk)µ−kma , (3.23)

where u(s0) = q−1/a and (m + b − 1)!/m! is a polynomial of degree b − 1 in terms of m. The
integration can be bounded by

max
|u|=R=q−1/a+δ

|g(u)| ·R−(m+1) · 2πR = O
(

max
|u|=R=q−1/a+δ

|g(u)|
)
· q(1/a−δ)m, (3.24)

which is power-saving from the leading terms. The dependence on the base field Q is from
max|u|=R=q−1/a+δ |g(u)|. Here g(u) = ζQ(µ`)(as)

b. By [Ros13, Theorem 5.9], we have

ζQ(µ`) =

∏
1≤i≤2g(1− αiq−s)

(1− q−s)(1− q1−s)
,

where |αi| =
√
q and g is the genus. Therefore on |u| = q1/a+δ we have

|g(u)| ≤ O(22g).

Combining above, we obtain that there exists ε > 0 such that

am = O(qm/aP (m)) +O(22gqm/a−ε), (3.25)

where the polynomial P (m) has degree at most b− 1 in m and the constants can be understood
by expanding the rational polynomial. Via an explicit computation, we have

ζQ(µ`)(s) ∼
∏

(1− αjq−s) ·
s− 1

(q1−s − 1)(1− q−s)
= (
∑

bi(s− 1)i) · (
∑

aj(s− 1)j),

where aj and bi serve as the coefficients for the Taylor expansion around s = 1. The aj does
not depend on Q. The polynomial P (m) depends on the first b coefficients of ζQ(µ`). We can
compute coefficients bj via taking derivatives of the ζ-polynomials directly, as an example,

b0 =
∏

(1− αjq−1), b1 = b0 ·
∑

αj ln q · q−1(1− αjq−1)−1,

similarly, we can compute bj and obtain that for 0 ≤ j ≤ b

bj = O(Cg)

for some constants C only depending on b and g. This finishes the proof for am = O(Cg)qm/amb−1.
The statement follows by adding up over all qm ≤ X.

Proof of Lemma 3.8. Firstly, it is easy to compute that bT (G,Fq(t)) = gcd(d, `−1) by Theorem
2.12 by only considering φ exactly corresponding to cyclotomic subfields of Fq(t)(µ`).

Next in order to show it is the true counting, it suffices to prove the equality 3.18 from
previous discussion, i.e., give the inductive argument for this case.

We need to firstly show that the number of C`-extensions L/F with Gal(L/Fq(t)) = C` o Cd
for each Cd-extension F/Fq(t) is bounded from above and below by X1/a(C`) lnb(C`,F )−1X. It
is clear from Theorem 3.9 that the upper bound holds. Let v be a place in Fq(t) that becomes
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split in F , and v =
∏
i wi. The number of C`-extensions that are ramified at w1 and unramified

at all other wi can be counted by [Wri89, Theorem 7.2, Theorem ] (together with the remarks
after Theorem 7.3), and has a leading term with the same order with the total counting. All
extensions satisfying this local condition have total Galois group C` oCd, since the Frobenius at
v generate Cd` in C` oCd. This implies that the lower bound for N(G,X) is X1/a lnb−1X where
b = maxF b(C`, F ).

Secondly, we need to show that we can add up each counting over all F . With the uniformity
proven in Lemma 3.11, we have that

N(G,X) ≤
∑
F

NF (C`, X/Disc(F )`) =
∑
F

O((C)g(F ) Disc(F )−`)X1/a lnb−1X,

where
O(
∑
F

(C)g(F )q−`(2g−2)) = O(1),

as long as q is large enough comparing to `. Therefore we prove N(G,X) has an upper bound
and lower bound with the same order

a = a(C`), b = max
F

b(C`, F ).

4 Embedding Cyclotomic Extension

In this section, we would like to consider Problem 1.2. Precisely, given a surjective group ho-
momorphism π : G→ B and a cyclotomic B-extension F/Q (equivalently a surjective continous
group homomorphism φ : GQ → B), we say the embedding problem E (GQ, φ, π) is solvable if
there exists a continuous group homomorphism φ̃ so that the following diagram commutes. We
say E (GQ, φ, π) is properly solvable if moreover φ̃ is surjective.

GQ

0 Ker(π) G B 0

φ̃
φ

π

We are going to see that the crucial difference between global function fields and number fields
is that Gal(Qcyc/Q) is projective for function fields, but not for number fields! Theorem 4.1 and
Theorem 4.3 serves the purpose to give a flavor of this question on two sides. As embedding
problems are studied a lot but not from this perspective, we do not claim they are novel from
the perspective of technology or strength.

4.1 Function Field

Theorem 4.1. Let Q be a global function field with maximal constant field Fq. For any cyclo-
tomic B-extension φ : GQ � B and a surjective group homomorphism π : G → B. We have
E (GQ, φ, π) is always solvable. If (Ker(φ), q(q−1)) = 1 and Ker(φ) is solvable, then E (GQ, φ, π)

is always properly solvable.
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Proof. Firstly, by [NSW08, Corollary (9.5.8)], it suffices to show that E (GQ, φ, π) is solvable.
We are going to show that it is always solvable. Notice that we can decompose φ = φ1 ◦ φ0 as a
composition of φ0 and φ1, therefore it suffices to show that E (GcycQ , φ1, π) is solvable.

GQ

GcycQ

0 Ker(π) G B 0

φ0

φ̃1
φ1

π

The group GcycQ ' Ẑ is a projective profinite group, therefore E (GcycQ , φ1, π) is always solvable.

4.2 Number Field

What makes the key difference between function fields and number fields is that GcycQ is no
longer projective as a profinite group, therefore it is not always possible to embed a cyclotomic
extension into a bigger G-extension. In general, it is a difficult question whether E (GQ, φ, π) is
solvable for a given φ and π.

We firstly give an analogue of Theorem 4.1. The analogue of constant extension from function
field on the number field side is the Zp-cyclotomic tower. This leads to:

Theorem 4.2. Let p be odd and G be a p-group with a surjective π : G→ Cpk and φ : GQ → Cpk

corresponding to any cyclotomic subfields of Q(µp∞). The problem E (GQ, φ, π) properly solvable.

Proof. Firstly, by [NSW08, Corollary (9.5.8)], it suffices to show that E (GQ, φ, π) is solvable.
Since GQ factors through the unique Zp-extension over Q, it can be always lift to G.

Next, we give a full criteria for E (GQ, φ, π) when G is abelian and Q is an arbitrary number
field. Notice that for each place v of Q, the map φ induces a local map φv : GabQv → GabQ → B,
therefore induces a local embedding problem E (GabQv , φv, π). Central embedding problems satisfy
a local-global principle, i.e., E (GQ, φ, π) is solvable if and only if E (GQv , φv, π) is solvable at
each v, see [MM99, Corollary 10.2].

Theorem 4.3. Let G be an abelian group and Q be a number field. The problem E (GQ, φ, π) is
properly solvable if and only if E (µ(Qv), φv, π) is solvable at each ramified v.

Proof. By [MM99, Corollary 10.2], E (GQ, φ, π) is properly solvable if and only if E (GQv , φv, π) is
solvable for any v. By class field theory, for a finite place v, we have GabQv ' Q̂

×
v ' Ẑ×µ(Qv)×Ov

where both Ẑ and Ov are projective profinite groups. Therefore to solve E (GQv , φv, π) it suffices
to solve E (µ(Qv), φv, π).

Example 4.4. Let Q = Q, an odd prime `, and d > 0. Let n| gcd(d, ` − 1), and B = Cn and
φ : GQ → Cn corresponds to the unique Cn-sub extension F contained in Q(µ`). By Theorem 4.3,
it suffices to check the local solvability by v = ` and v =∞. Notice that (`, `− 1) = 1, the prime
` is totally tamely ramified in F . The local map φv then maps µ(Q`) = {µ`−1} ' Z/(`− 1)Z by
sending the generator to generator of Cn. In order to lift φ, the only way is to map the generator
of µ(Q`) to g ∈ Cd such that ḡ generate Cn and (`−1)g = 0. Writing d =

∏
i p
ri
i , `−1 =

∏
i p
ui
i ,
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gcd(d, ` − 1) =
∏
i p
si
i and n =

∏
i p
ti
i . We consider all abelian groups here as a direct product

of cyclic pi-groups. If φ(gi) = 1 for every pi|n, then we need (`− 1)gi = 0 for a generator gi in
Cd, equivalently, this means that ui ≥ ri. At v = ∞, if φ is totally real, i.e., n|(` − 1)/2, then
always solvable. If n - (`−1)/2, then it suffices that 2gi = 0 and φ(gi) has order 2. This requires
2-Sylow subgroup for Cd and Cn being the same.
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