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Abstract
We give a new method for counting extensions of a number field asymptotically by discriminant,

which we employ to prove many new cases of Malle’s Conjecture and counterexamples to Malle’s
Conjecture. We consider families of extensions whose Galois closure is a fixed permutation group G.
Our method relies on having asymptotic counts for T -extensions for some normal subgroup T of G,
uniform bounds for the number of such T -extensions, and possibly weak bounds on the asymptotic
number of G/T -extensions. Our new results use T either abelian or Sm3 , though our framework is
general.

1. Introduction

Let k be a number field, k̄ a fixed choice of its algebraic closure, and G a permutation
group of degree n (i.e. transitive subgroup of the symmetric group Sn). We call a field
extension L/k a G-extension if the Galois closure L̃ of L over k has Galois group Gal(L̃/k)

which, acting on the embeddings L ↪→ L̃, is isomorphic to G as a permutation group. Define
a set of field extensions

Fn,k(G;X) = #{L/k : L ⊂ k̄, [L : k] = n, Gal(L̃/k) ∼= G, | disc(L/k)| ≤ X},
where ∼= denotes isomorphism as permutation groups and | · | denotes the norm down to Q.
The subscript n is redundant since G is a permutation group, but we include it because the
degree is often a convenient reminder of which permutation representation we are considering
for a particular abstract group.

Number fields are “counted” by studying the asymptotic growth of #Fn,k(G;X) as X →
∞. Malle [Mal02, Mal04] was the first to make general predictions for this rate of growth,
leading to the following conjecture.

Conjecture 1 (Number Field Counting Conjecture). Let k be a number field and G a
transitive permutation group of degree n. Then there exist positive constants a, b, c > 0
depending on k and G such that

#Fn,k(G;X) ∼ cX1/a(logX)b−1

as X → ∞.

In this paper we prove many new cases of Conjecture 1 for a class of permutation groups
we call concentrated. We say a transitive permutation group G is concentrated in a proper
normal subgroup N if N contains all minimum index elements of G, and we say that G is con-
centrated if this holds for some proper normal subgroup N . Equivalently, G is concentrated
if

⟨g ∈ G : ind(g) = a(G)⟩ ≠ G,

where ind: Sn → Z is the index function defined by ind(g) = n−#{orbits of g} and a(G) =
ming∈G−{1} ind(g). While we do not prove Conjecture 1 for any non-concentrated groups, our
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methods are able to improve the known upper bounds for many non-concentrated groups as
well.

Our strategy requires, as input, fairly weak information about the number of G/N -
extensions, at the expense of requiring “uniform” information about relative N -extensions of
number fields. We specifically show how this strategy may be executed when N is abelian
(where the uniformity required is closely related to the sizes of torsion subgroups of class
groups) and, in many cases, when N ∼= Sr3 for some r ≥ 1. This leads to a proof of Con-
jecture 1 for many new, infinite families of transitive groups. Additionally, almost all recent
progress toward Conjecture 1 has been for concentrated groups, and our work provides a uni-
fied framework for viewing all such results. See Section 1.4 for a discussion on how previous
work fits into this framework.

Our main results are Theorem 1.9 and Theorem 1.11. These theorems take as input
upper bounds on the number of G/N -extensions and on the average size of certain torsion
subgroups of the class group of such extensions. We convert these bounds into an upper
bound for #Fn,k(G;X), and if these “input bounds” are sufficiently small, then we are able
to prove Conjecture 1 for #Fn,k(G;X) with explicit expressions for a and b. The inductive
nature of these results means that each time we prove Conjecture 1 (or even obtain an
improved upper bound) for one group G, we can take that and use it as input in our main
theorems to prove further cases of Conjecture 1. This has a compounding effect on the
number of new results we are able to prove.

In all cases where we prove Conjecture 1 (and in all other cases where it is known), the
constant a agrees with Malle’s predicted value, which is a(G) [Mal02]. The correctness of
this value is referred to as the Weak Form of Malle’s Conjecture, usually expressed in the
softer form

X1/a(G) ≪k,G #Fn,k(G;X) ≪k,G,ϵ X
1/a(G)+ϵ.

Malle also proposed a value for b in [Mal04], which he denotes b(k,G). This number is
given by the number of orbits of minimal index elements in G under the cyclotomic action, i.e.
the Galois action x.g = gχ(x)

−1 for χ : GK → Ẑ the cyclotomic character. Conjecture 1 with
the values a = a(G) and b = b(k,G) is referred to as the Strong Form of Malle’s Conjecture.
While the strong form is known to be true in a number of cases, Klüners [Klü05a] gave a
counterexample by proving that

#F6,Q(C3 ≀ C2;X) ≫ X1/2 logX

despite the fact that b(Q, C3 ≀ C2) = 1. Our results include proofs of Conjecture 1 for
infinitely many groups where b = b(k,G) agrees with Malle’s prediction (thus proving the
strong form of his conjecture in these cases), and infinitely many groups where b ̸= b(k,G)
contradicts Malle’s prediction. See Corollary 1.6 where we verify Conjecture 1 for infinitely
many specific counter examples to Malle’s prediction as proposed by Klüners. However, in
general the expression we give for b can be difficult to evaluate and depends on the existence
of solutions to certain embedding problems.

Remark 1.1. Türkelli has proposed a corrected value of b [Tür15] in Malle’s Conjecture.
Wang [Wan24] has evaluated the expression for the correct b proved in this paper for a
certain infinite family of examples to show that Türkelli’s modified prediction is incorrect.

Authors’ Comment. Wang will post the paper referenced in the above remark to their website
concurrently with this paper.
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1.1. Example Corollaries. It is not feasible to provide an exhaustive list of the types of
groups for which we prove Conjecture 1 because our results are flexible enough to be applied
in many different situations. Thus, before we state our main technical results, we present
several representative cases and families of groups for which our main results give a proof of
Conjecture 1. These results will be proved in Section 7.

Theorem 1.2. There are 39770 concentrated groups of degree ≤ 31, out of a total of 40238
transitive groups of degree ≤ 31.

Conjecture 1 holds for at least 1568 of these groups. It also holds for at least 2,685,340 of
the 2,801,324 transitive groups of degree 32.

Authors’ Comment. Currently, Theorem 1.2 lists only the number of nilpotent transitive
groups for which we prove Conjecture 1, following from Corollary 1.3 below. There are
only 1758 nilpotent transitive groups of degree ≤ 31, so the 1568 nilpotent transitive groups
covered by Theorem 1.2 are fairly close to the total number of such groups.

We are preparing Magma code to provide a list of non-nilpotent transitive groups for which
we prove Conjecture 1. Theorem 1.2 will be updated accordingly prior to this paper ap-
pearing on the arXiv, and the code will be posted publicly. As a baseline, of the 3606
transitive permutation groups of degree up to 19, we prove the field counting conjecture for
1320 nilpotent groups and at least 209 non-nilpotent groups.

Theorem 1.2 follows from a computation in Magma [BCP97] that checks which groups
satisfy the hypotheses of our main results. To the best of our knowledge, previous methods
for proving Conjecture 1 are amenable for at most 749 of the groups of degree up to 31 and
at most 1974 of the groups of degree 32.

We now provide several important families of groups for which we prove Conjecture 1.

Corollary 1.3. Let G be a finite nilpotent transitive permtuation group for which ⟨g ∈
G − {1} : ind(g) = a(G)⟩ is abelian, i.e. all the elements of minimal index commute with
each other.

Then Conjecture 1 holds for G over any number field.

Previously, the most far reaching result proving Conjecture 1 in this direction was the work
of Koymans and Pagano [KP21, Theorem 1.1], which proves Conjecture 1 when G is nilpotent
in the regular representation with ⟨g ∈ G−{1} : ind(g) = a(G)⟩ contained in the center of G.
We allow any permutation representation and even in the regular representation case have
a weaker hypothesis on the minimal index elements. For example, we now know Conjecture
1 for the holomorph group Hol(D4) = D4 ⋊ Aut(D4) in its degree 8 affine transformation
action on the elements of D4.

WhenG andH are permutation groups, we writeG≀H for their wreath product. We always
take G ≀ H to be a permutation group in the wreath representation. For a positive integer
n, we write Cn for the cyclic group of order n in its regular permutation representation.

Corollary 1.4. Let n be a positive integer, ℓ be the smallest prime dividing n, B a transitive
permutation group of degree m, and k a number field. If there exists at least one B-extension
of k and

#Fm,k(B;X) ≪k X
1
2
+ 1

ℓ−1
−δ

for some δ > 0, then Conjecture 1 holds for G = Cn ≀B over k.
In particular, Conjecture 1 holds for Cn ≀B in each of the following situations:
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• B is in its regular permutation representation, with |B| > 2 if n is odd, and there is
at least one B-extension of k;

• B is a nilpotent group, not containing a transposition if n is odd; or
• B is a finite simple group of Lie type over Fq with rank r with q ≥ q0(r) for some

absolute constant q0(r) depending only on r, B occurs as a Galois group over k, and
B is in any primitive permutation representation of non-minimal degree, other than
PSU6(Fq) in its non-minimal action on the parabolic subgroup P3.

In the case G = C2 ≀ B, this strengthens Klüners’ result that Conjecture 1 is true for G
under the assumption that 1 ≤ #Fm,k(B;X) ≪ϵ X

1+ϵ [Klü12, Corollary 5.10]. For wreath
products Cn ≀B with n > 2, these are the first results of this form.

By taking advantage of the inductive nature of our results, we can iterate these examples
to prove the following:

Corollary 1.5. Let k be a number field, let n1, . . . , nr ≥ 2 be integers, and let G = Cn1 ≀
Cn2 ≀ · · · ≀ Cnr . Suppose that any one of the following holds:
(a) n2 > 2,
(b) n1, n2, ..., nr are all powers of 2,
(c) n1 = 2d and n2 = 2, and if r ≥ 3 we also have 1 ≤ d < 6− 4/n3,
(d) n1 = 2d3 and n2 = 2, and if r ≥ 3 we also have 0 ≤ d < 13/3− 4/n3.
Then Conjecture 1 holds for G over k.

In particular, this includes all the Sylow p-subgroups C ≀r
p of Spr as well as Klüners’ [Klü05a]

original counterexample to Malle’s Conjecture, C3 ≀ C2 in degree 6.

The family of wreath products of two cyclic groups is rich with important behavior. The
above result contains the first groups for which Conjecture 1 has been proven with an as-
ymptotic that disagrees with Malle’s prediction, including Klüners’ counterexample C3 ≀C2.
Klüners proposed a larger family of wreath products for which his arguments show that
Malle’s conjecture is incorrect [Klü05a, Page 413], many of which fall under Corollary 1.5:

Corollary 1.6 (Klüners’ counterexamples). Let G = Cℓ ≀Cd for d | ℓ−1 and k∩Q(ζℓ) = Q.
If d > 2 then Conjecture 1 is true for G over k, but b ̸= b(k,G) disagrees with Malle’s
prediction.

We similarly prove results for wreath products with S3 in place of a cyclic group.

Corollary 1.7. Let G = S3 ≀ B be the wreath product of S3 in degree 3 with a transitive
permutation group B of degree m. Let k be a number field for which there exists at least one
B-extension of k.

(i) Suppose that
#Fm,k(B;X) ≪k X

5
3
+ 1

3m[k:Q]
−δ

for some δ > 0. Then Conjecture 1 holds for G over k.
(ii) Furthermore, if B is primitive and

#Fm,k(B;X) ≪k X
5
3
+ 10

18m−15
−δ

for some δ > 0, then Conjecture 1 holds for G over k.
In particular, Conjecture 1 holds for S3 ≀ B over any number field when B is any of the
examples in the bulleted list of Corollary 1.4. Conjecture 1 also holds for the iterated wreath
products S≀r

3 in degree 3r.
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Conjecture 1 was not previously known for any groups in this family except the trivial
case S3 ≀ 1 ∼= S3.

Besides wreath products, our results also allow us to access many other groups expressible
as semidirect products such as the following:

Corollary 1.8. Let k be a number field, let B be a transitive permutation group of degree m,
let p be a prime, and let W ≤ Fmp be the trace 0 subspace. Let G = W ⋊B, where B acts on
W by means of its degree m permutation representation. If there is at least one B-extension
of k, and there is some δ > 0 so that

#Fm,k(B;X) ≪k,m X
1

2(p−1)
−δ,

then Conjecture 1 holds for G in its degree pm permutation representation on the cosets of
W1 ⋊B, where W1 < W is the subspace with first coordinate 0.

In particular, Conjecture 1 holds for G when B is:
• in its regular representation, and |B| ≥ 38 · (p− 1)2; or
• nilpotent, with a(B) < 1

2(p−1)
.

• B is a finite simple group of Lie type over Fq with rank r with q ≥ q1(r, p) for some
absolute constant q1(r, p) depending only on r and p, B occurs as a Galois group over
k, and B is in any primitive permutation representation of non-minimal degree, other
than PSU6(Fq) in its non-minimal action on the parabolic subgroup P3.

1.2. Main Results. We state first our result for wreath products of the form S3 ≀B.

Theorem 1.9. Let k be a number field, let B be a transitive permutation group of degree m
such that there is at least one B extension of k, and let G = S3 ≀B.

Suppose θ ≥ 0 is such that

(1.1)
∑

F∈Fm,k(B;X)

|ClF [2]|2/3 ≪m,k X
θ.

Then the following hold:
(i) If θ < 2 then there exists a positive constant c(k,G) > 0 such that

#F3m,k(G;X) ∼ c(k,G)X.

(ii) If θ ≥ 2 then
#F3m,k(G;X) ≪m,k,ϵ X

θ+1
3

+ϵ.

For n ≥ 2, we have a(Sn ≀ B) = 1 and b(k, Sn ≀ B) = 1 [Mal04, Lemma 2.2]. Hence,
Theorem 1.9 (i) proves cases of the Strong Form of Malle’s Conjecture.

In practice, the bound Xθ in (1.1) is often proven as a hybrid bound θ = β + t where
β ≥ 0 is such that

(1.2) #Fm,k(B;X) ≪m,k X
β,

and where t ≥ 0 is such that

|ClF [2]|2/3 ≪m,k | disc(F/Q)|t

for each B extension F/k. For example, the first part of Corollary 1.7 will follow from the
bound |ClF [2]| ≪ | disc(F/Q)|

1
2
− 1

2[F :Q]
+ϵ [BST+20]. It is often possible to do better bounding

t on average, for example [LOS24, Corollary 1.14] gives a bound for the average size of
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|ClF [2]| when varying F over primitive extensions. This is used to prove the second part of
Corollary 1.7.

The groups S3 ≀B are examples of imprimitive groups. An imprimitive extension of fields
is one that has some intermediate subfield. In the case of S3 ≀B, any L ∈ F3m,k(S3 ≀B;X) is
necessarily a cubic extension of some F ∈ Fm,k(B;X). In general, an imprimitive group G
can always be realized as a subgroup of H ≀B for some permutation groups H,B where the
projection of Hm ∩ G onto each coordinate of Hm is surjective and G surjects onto B. In
the language of field extensions, any L ∈ Fnm(G;X) is a tower of field extensions L/F/k for
L ∈ Fn,F (H;X) and F ∈ Fm,k(B;X). Given an imprimitive group G realized in this way,
we say that (H,B) is a tower type for G, as defined in [Lem23, page 12].

The majority of new cases we prove for Conjecture 1 follow from Theorem 1.11 below,
which applies when G has an abelian normal subgroup. This theorem is structured similarly
to Theorem 1.9, but with the added benefit that it does not require G to have a certain im-
primitive structure. The statement of Theorem 1.11 requires us to develop some terminology.
To give the reader an idea of what to expect, we state a corollary for some imprimitive per-
mutation groups. We will prove that Corollary 1.10 follows from Theorem 1.11 in Subsection
5.2. Let a(U) = ming∈U−{1} ind(g) for any subset U of a permutation group.

Corollary 1.10. Let k be a number field and G be an imprimitive transitive permutation
group with tower type (A,B) for which A is a finite abelian group and B is a transitive
permutation group of degree m such that there is at least one B extension of k.

Suppose θ ≥ 0 is such that

(1.3)
∑

F∈Fm,k(B;X)

|Hom(ClF , A)| ≪m,|A|,k X
θ.

Then the following hold:
(i) If θ < |A|

a(Am∩G)
then there exists a positive constant c(k,G) > 0 such that

#Fm|A|,k(G;X) ∼ c(k,G)X1/a(Am∩G)(logX)b−1,

where b ≥ 0 is some integer (given explicitly in Theorem 1.11).
(ii) If θ ≥ |A|

a(Am∩G)
then

#Fm|A|,k(G;X) ≪m,|A|,k,ϵ X
θ/|A|+ϵ.

Equation (1.3) is very similar to (1.1). Indeed, if the abelian group is given by

A =
∏

ℓ prime

rℓ∏
i=0

Z/ℓnℓ,iZ,

it follows that

|Hom(ClF , A)| ≤
∏

ℓ prime

rℓ∏
i=0

|ClF [ℓnℓ,i ]| ≤
∏

ℓ prime

|ClF [ℓ]|
∑rℓ

i=0 nℓ,i .

In order to move away from imprimitive structures for the full statement of Theorem 1.11,
it is convenient to structure the result as counting elements of the set of continuous surjective
group homomorphisms

Sur(Gk, G;X) = {π ∈ Sur(Gk, G) : | discG(π)| ≤ X},
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whereGk is the absolute Galois group of k, and discG(π) is the relative discriminant disc(F/k),
and F is the field fixed by π−1(StabG(1)). The Galois correspondence implies that the size
of this set is #Fn,k(G;X) times a constant depending only on G. We make this precise in
Lemma 2.3 below.

Our method of proof will involve partitioning the set of G-extensions by the subfield of
the Galois closure fixed by a particular normal subgroup T ⊴ G. This is very naturally
described in terms of the surjections. If T ⊴ G has canonical quotient map q : G → G/T ,
we consider the pushforward

q∗ : Sur(Gk, G) → Sur(Gk, G/T ).

The elements of the image q∗ Sur(Gk, G) ⊆ Sur(Gk, G/T ) correspond via Galois theory to
Galois G/T -extensions M/k for which there exists a G-extension F/k whose Galois closure
F̃ has fixed field F̃ T =M . The elements of a fiber of q∗ correspond to such G-extensions F .
Even though G is a permutation group, we are forgetting this structure when we take the
quotient G/T , which we consider as a permutation group in its regular representation.

Our main results take counting results for certain G/T -extensions, which we express as
counting elements of the set

q∗ Sur(Gk, G;X) = {π ∈ Sur(Gk, G/T ) : π = q ◦ π̃ for some π̃ ∈ Sur(Gk, G;X)},
as an input towards counting G-extensions. In particular, the elements of q∗ Sur(Gk, G;X) ⊆
Sur(Gk, G/T ) correspond to Galois G/T -extensions which are equal to the fixed field F̃ T of
the Galois closure F̃ of some G-extension F/k with | disc(F/k)| ≤ X.

In order to state the explicit values for a and b in our proven cases of Conjecture 1, we
give the definitions for certain invariants appearing in the Twisted Malle Conjecture [Alb21,
Conjecture 3.10], stated as Conjecture 2 below without explicit values for a, b, c. Let T ⊴ G
be a normal subgroup of a finite transitive permutation group.

(i) When π : Gk → G is a continuous homomorphism, we define T (π) to be the group
T together with the Galois action x.t = π(x)tπ(x)−1. When T is abelian, the Galois
module T (π) depends only on the pushforward q∗π. For this reason, we often abuse
notation and write T (q∗π) for T (π) in this case.

(ii) The cohomology group H1
ur(k, T (π)) is the subgroup of unramified classes,

H1
ur(k, T (π)) = {f ∈ H1(k, T (π)) : ∀p, resIp(f) = 0},

where p ranges over all finite and infinite places of k, and Ip is the inertia group of k
at each finite place p and the decomposition group at each infinite place.

(iii) a(T ) = min
t∈T−{1}

ind(t) is the minimum index of elements in T , where T is viewed as a

subset of the permutation group G, and
(iv) b(k, T (π)) is the number of orbits of elements {t ∈ T : ind(t) = a(T )} of minimal index

under the Galois action x : t 7→ (π(x)tπ(x)−1)χ
−1(x) for χ : Gk → Ẑ× the cyclotomic

character. This is the action induced from π twisted by the cyclotomic character
χ : Gk → Ẑ×.

These invariants occur naturally in our method of proof.

Theorem 1.11. Let k be a number field and G a finite transitive permutation group of
degree n for which there exists at least one G-extension of k. Suppose that T ⊴ G is a proper
normal subgroup and that T is abelian.
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Suppose θ ≥ 0 is such that

(1.4)
∑

π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪n,k X

θ.

Then the following hold:
(i) If θ < 1/a(T ) then there exists a positive constant c(K,G) > 0 such that

#Fn,k(G;X) ∼ c(k,G)X1/a(T )(logX)maxπ b(k,T (π))−1,

where the maximum is taken over π ∈ q∗ Sur(Gk, G).
(ii) If θ ≥ 1/a(T ) then

#Fn,k(G;X) ≪n,k,ϵ X
θ+ϵ.

Theorem 1.11(i) proves Conjecture 1 when the hypotheses apply, and is the source of the
majority of our examples in the introduction.

Remark 1.12. Corollary 1.10 is the case of Theorem 1.11 where G ⊆ A ≀B is an imprimitive
group with tower type (A,B) for some abelian group A and for which we specifically take
T = Am∩G. As we will see in Section 7, different choices for T can provide different quality
results even for imprimitive groups. In this sense, Theorem 1.11 is significantly more flexible
that Corollary 1.10. For example, the full strength of Theorem 1.11 is required to prove
Corollary 1.3.

The constants a, b from Conjecture 1 are made explicit in Theorem 1.11(i), and c is made
explicit in the proof of Theorem 1.11. It is not guaranteed that these constants agree with
Malle’s predictions. However, often they do.

In all cases in which we apply Theorem 1.11, we have θ ≥ 1/a(G \ T ) := ming∈G\T ind(g).
Indeed, a generalized version of Malle’s weak lower bound predicts that #q∗ Sur(Gk, G;X) ≫
X1/a(G\T )−ϵ. There are no known counter examples to this prediction. Clearly 1/a(G \ T ) <
1/a(T ) implies that a(T ) = a(G), and hence all current applications, as well as predicted
future applications, of Theorem 1.11(i) prove Conjecture 1 with the a-value as predicted by
Malle.

The value for c will be expressed as a convergent sum of Euler products. This is reminiscent
of the leading coefficient for #F4,Q(D4;X) [CYDO02], and in fact occurs for the same reason.
All cases of Conjecture 1 that we are able to prove with Theorem 1.11 have an accumulating
subfield, that is a nontrivial extension L/k that lies inside a positive proportion of (the Galois
closures of) G-extensions of k. Accumulating subfields are widely expected to prevent the
leading coefficient from being equal to an arithmetically significant Euler product in the spirit
of Bhargava’s predictions for Sn [Bha10], and are known to cause a failure of independence
when counting with restricted local conditions. See [Woo09, ASVW17, ST22, Alb23] for
further examples and discussion of this phenomenon.

As in Theorem 1.9, the bound Xθ is often computed as a hybrid bound θ = β + t. Here,
β ≥ 0 is such that

#q∗ Sur(Gk, G;X) ≪n,k X
β

is an upper bound on the number of G/T -extensions parametrized by q∗ Sur(Gk, G;X). The
constant t can be taken to satisfy

|H1
ur(k, T (π))| ≪n,k | disc(F (π)/k)|t
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for each π ∈ q∗ Sur(Gk, G;X), where F (π) is the field fixed by π−1(StabG(1)). A bound for
the average size |H1

ur(k, T (π))| might also be used here.
The size of q∗ Sur(Gk, G;X) has not been previously studied, although it can be bounded

by sets of G/T -extensions with bounded invariants. We will later define a pushforward
discriminant q∗ discG on G/T -extensions for which

q∗ Sur(Gk, G;X) ⊆ {π ∈ Sur(Gk, G/T ) : |q∗ discG(π)| ≤ X}.
See (5.1) and (5.2). We can then use upper bounds for counting G/T -extensions ordered
with respect to this pushforward discriminant as input in Theorem 1.11. When G is an
imprimitive group, we will see in Proposition 5.2 that the pushforward discriminant agrees
with the discriminant of some transitive representation of G/T , which is the key observation
implying Corollary 1.10. In general, the quantity β is about upper bounds for counting
G/T -extensions.

The object H1
ur(k, T (π)) behaves like torsion in a class group. Indeed, if T (π) carries the

trivial action then H1
ur(k, T (π)) = Hom(Clk, T ). In all cases, we can use Minkowski’s bound

on the size of the class group to give an initial bound

|H1
ur(k, T (π))| ≪k,ϵ | disc(π)|d(T̂ )/2+ϵ,

for d(T̂ ) the minimum number of generators for T̂ = Hom(T,Q/Z) as a Galois module (see
Lemma 4.1).

In order to take full advantage of the inductive nature of our results, we prove pointwise
inductive bounds for |H1

ur(k, T (π))| that improve over this initial bound. Our main result in
this direction is Lemma 4.3, which bounds the size of H1

ur(k, T (π)) in terms of M and T/M
for some subgroup M ≤ T . In order to use Lemma 4.3 optimally, one must make a strategic
choice for the subgroup M .

It is not clear in general how to make such strategic choices, so we leave the complete
discussion for Section 4. In certain cases, particular choices give us strong upper bounds for
|H1

ur(k, T (π))| which we give below. We say a Gk-module is constant over a number field F/k
if the Galois action factors through Gal(F/k). The field of definition of a Gk module A is the
smallest Galois field extension F/k such that A is constant over F . The Galois module T (π)
has field of definition given by the fixed field of κ ◦ π : Gk → Aut(T ), where κ : G→ Aut(T )
is the action by conjugation. Equivalently, if π correpsonds to the G-extension F/k then the
field of definition for T (π) is the subfield of F fixed by the centralizer of T in G.

In the following result, a nilpotent G-module [Hil82, Definition 1.2] is defined to be a G-
module M for which the lower central Gk-series terminates, where the lower central G-series
is defined recursively by Γ1

G(M) =M and ΓjG(M) = ⟨m− x.m|x ∈ G,m ∈ Γj−1
G (M)⟩.

Corollary 1.13. Let A be a finite Gk-module that is constant over F.
(i) If A is a nilpotent Gk-module, then

|H1
ur(k,A)| ≪k,|A|,ϵ | disc(F/Q)|ϵ.

(ii) If A is a simple Gk-module with exponent e, then

|H1
ur(k,A)| ≪|A|,ϵ |ClF [e]| · | disc(F/Q)|ϵ.

(iii) If there is an injective homomorphism of Gk modules A′ → IndkF (A) := Z[Gk]⊗Z[GF ]A,
then

|H1
ur(k,A

′)| ≪|A|,[F :k] |Hom(ClF , A)|.
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(Here we only use A as a constant GF module and not any Gk-module structure on
A.)

If G is a nilpotent group in any representation, then for any abelian T ⊴ G and any
π : Gk → G the induced Galois module T (π) is necessarily a nilpotent Gk-module. Corollary
1.13(i) is used in the proof Corollary 1.3, showing that |H1

ur(k, T (π))| ≪ | disc(F/Q)|ϵ has
essentially no contribution to the bound in (1.4).

The case of induced modules is particularly relevant to Corollary 1.4. The subgroup
T = Cm

n ⊴ Cn ≀ B = G is given by the induced module T = IndB1 (Cn). This implies that
T (π) = IndkF (π)(Cn) as Gk-modules, so that Corollary 1.13(iii) together with Minkowski’s
bound allows us to take |H1

ur(k, T (π))| ≪ | disc(F (π)/Q)|1/2+ϵ in (1.4), greatly improving
our results.

1.3. Method of Proof. Broadly speaking, we prove our main results by first considering
for some normal subgroup T ⊴ G with canonical quotient map q : G → G/T the fibers of
the pushforward

q∗ : Sur(Gk, G) → Sur(Gk, G/T )

separately, then adding the results for each fiber together. Alberts constructed a bijection
between the fiber q−1

∗ (π) with a certain set of crossed homomorphisms in [Alb21, Lemma
1.3], generalizing the Galois correspondence betweenG-extensions and (surjective) homomor-
phisms. We discuss this correspondence further in Subsection 6.1. This naturally suggests a
“twisted” version of Conjecture 1.

Conjecture 2 (Twisted Number Field Counting Conjecture). Let k be a number field, and
G a transitive permutation group of degree n, and T ⊴ G a proper normal subgroup with
canonical quotient map q : G → G/T , and π ∈ q∗ Sur(Gk, G). Then there exist positive
constants a, b, c > 0 depending on k, G, T , and π such that

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} ∼ cX1/a(logX)b−1

as X → ∞.

Alberts formulates this conjecture with explicit predictions for a and b in [Alb21, Conjec-
ture 3.10] in analogy to Malle’s predictions, with the caveat that the prediction for the value
of b has similar issues to Malle’s predictions. Alberts’ counting function

N(L/k, T ⊴ G;X) = #{F ∈ Fn,G(k;X) : (F̃ )T = L}
is equal to a constant multiple of #{ψ ∈ q−1

∗ (π) : | discG(ψ)| ≤ X} via the Galois correspon-
dence. The correctness of these predictions is referred to as the Twisted Malle Conjecture
(with a corresponding weak and strong form). This conjecture was proven for T abelian
by Alberts and O’Dorney in [AO21, Corollary 1.2] as long as there exists at least one G-
extension. We take this result and use it to evaluate the sum∑

π∈Sur(Gk,G/T )

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X}.(1.5)

The asymptotic growth rate of each individual summand is given by [AO21, Corollary 1.2].
We give a bound for the dependence of each summand on π, allowing us to take the sum of
these growth rates. The set q∗ Sur(Gk, G) appearing in Theorem 1.11 is precisely the subset
of π ∈ Sur(Gk, G/T ) for which the fiber q−1

∗ (π) is nonempty, that is

q∗ Sur(Gk, G) = {π ∈ Sur(Gk, G/T ) : q
−1
∗ (π) ̸= ∅}.
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A necessary, but not sufficient, criterion for this method to yield a proof of Conjecture 1 in
this paper is that one of the fibers q−1

∗ (π) contributes a positive proportion of G-extensions.
The Twisted Malle Conjecture, with invariants predicted by Alberts, suggests that there
exists a fiber of positive density if and only if G is concentrated in T .

We expect our method of proof to apply to concentrated groups in general: if one knew
enough about counting “twisted” T -extensions along the lines of Conjecture 2 for some sub-
group T with enough control of how the error depends on the action induced by π, then
our method could be applied to prove an analogous result to Theorem 1.11 with T being
such a group. Theorem 1.11 results from our extensive understanding of counting abelian
extensions. The first step in the proof of Theorem 1.9 is to prove new cases of Conjecture 2
for T = Sm3 ⊴ S3 ≀B (see Theorem 3.1). We are able to do this because wreath products are
the “generic imprimitive structure” for a group and because we can count S3-extensions very
well. In this case, the twisted counting function #{ψ ∈ q−1

∗ (π) : | discS3≀B(ψ)| ≤ X} can be
related to an untwisted counting function #Sur(GF , S3;X) for an extension F/k determined
by π. Since we already know Conjecture 1 holds for S3, we can use this relation to count the
size of the fibers.

We make this method explicit in Section 2, detailing exactly what kind of information we
need about Conjecture 2 in order to prove new cases of Conjecture 1. We expect that, with
any results proving new cases of Conjecture 2 with the dependence on π made explicit, our
methods will convert these to proofs of Conjecture 1 for new concentrated groups.

Remark 1.14. The methods in this paper are readily generalizable. There is potential for
our methods to be applied in the following more general situations.

• The upper bounds in Theorem 1.9(ii) and Theorem 1.11(ii) currently depend on k.
If the dependence of the inputs on k is made explicit, we expect that the dependence
of the result on k can be made explicit as well.

• It would be interesting to apply our methods to “concentrated normal subgroups” T ⊴
G to prove new cases of Conjecture 2. We call the normal subgroup T concentrated if
the minimal index elements in T , namely {t ∈ T : indG(t) = a(T )}, generate a proper
subgroup of T . This is done by partitioning q−1

∗ (π) over the second quotient map
T → T/N for some abelian normal subgroup N ⊴ G contained in T that contains all
the elements of minimal index. (Note that, if G were itself concentrated in T , then
we could already apply Theorem 1.11 to G with the proper normal subgroup N).

• It would be interesting to generalize Theorem 1.11 to other admissible orderings.
Indeed, Alberts–O’Dorney work at this level of generality in [AO21].

We opt to prove one extension of our methods in Theorem 9.1 that involves alternate or-
derings as a demonstration of the generality and power of this technique. This result will
show that, for any finite group with a nontrivial abelian normal subgroup, there exists some
ordering for which we can give the asymptotic number of G-extensions.

1.4. History of Number Field Counting Results. Conjecture 1 is known for several
infinite families.

We present the Table 1.4 containing the previously known cases of Conjecture 1, separated
according to whether the groups are concentrated or not. These counting results are over an
arbitrary number field unless otherwise specified. For each of the groups listed in this table,
the value for a in Conjecture 1 is known to agree with Malle’s prediction.
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Group(s) Reference
concentrated

Abelian ̸∼= Cr
p [Wri89]

D4 ⊂ S4 [CYDO02]
Generalized quaternion groups Q4m [Klü05b, Satz 7.6]

for m = 2ℓ in degree 4m,
12T5 over k = Q [Klü05b, Satz 7.7]
C3 ≀ C2 over k = Q [Klü05a]
C2 ≀H when #Fm,k(H;X) ≪ X1+ϵ [Klü12]
Sn × A, n ≤ 5, A =abelian [Wan21a, MTTW20] over k = Q

(over arbitrary k if 2 ∤ |A| when n = 3
or gcd(|A|, n!) = 1 if n ∈ {4, 5})

Sn ×B, n ≤ 5, B =nilpotent in degree |B|, [MR24]
2 ∤ |B| if n = 3,
gcd(|B|, n!) = 1 if n ∈ {4, 5}

G ⊊ Cℓ ≀ Cℓ imprimitive in degree ℓ2 [FK21, KW23]
G ⊂ S|G| nilpotent, [KP21]

{g : ind(g) = a(G)} ⊆ Z(G)
non-concentrated

Cr
p [Wri89]

Sn, n ≤ 5 [DW88, BSW15]
S3 ⊂ S6 [BW07, BF10]

Table 1. Previously known cases of Conjecture 1

Our main results expand the list for concentrated groups many times over, to the point
that it is no longer feasible to give an exhaustive list of the types of such groups. In particular,
Theorem 1.11 subsumes many previously known results for concentrated groups. We also
expand several of these families:

• Klüners’ results for C2 ≀H are expanded to include any H for which #Fm,k(H;X) ≪
X3/2−δ for some δ > 0, as well as analogous families Cn ≀H. See Corollary 1.4.

• Koymans–Pagano’s results for nilpotent groups in the regular representation with
{g : ind(g) = a(G)} ⊆ Z(G) are expanded to nilpotent groups in any representation
with ⟨g : ind(g) = a(G)⟩ abelian. See Corollary 1.3. This family also includes
the generalized quaternion groups Q4m for m = 2ℓ in the regular representation
proven by Klüners [Klü05b] and the imprimitive groups G ⊊ Cℓ ≀Cℓ, special cases of
which are proven by Fouvry–Koymans [FK21] while the general family is proven by
Klüners–Wang [KW23]. We complete the latter family to include the wreath product
G = Cℓ ≀ Cℓ.

Aside from abelian groups, there are only finitely many non-concentrated groups for which
Conjecture 1 is known to hold. Counting D4-extensions ordered by conductor can also
naturally be interpreted as a non-concentrated result [ASVW17].

Conjecture 2 was previously known only in one case, with the values for a and b as predicted
by Alberts: T (π) for T ⊴ G ⊆ Sn an abelian normal subgroup and π ∈ q∗ Sur(Gk, G) [AO21].
We prove new nonabelian cases of Conjecture 2 in Theorem 3.1.
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Also, as Theorems 1.9 and 1.11 both implicitly use and produce upper bounds on #Fn,k(G;X)
of the form #Fn,k(G;X) ≪k,n X

β, we summarize some of what is currently known for upper
bounds. Schmidt [Sch95] proved that it suffices to take β = n+2

4
when G is transitive of de-

gree n, showing that such a bound always exists; it is now known we may take β = 1.5(log n)2

[LOT22, Lem23] (though see also [EV06] and [Cou20] for earlier improvements depending
only on the degree of G). There are a number of other techniques that more substan-
tially leverage the group structure of G [KM04, Dum18, Meh20, Alb20, Kl2, Bha24, Lem23,
Lem24], and by taking advantage of these results as inputs to our main theorems, one can
produce a plethora of new examples for which Conjecture 1 holds. The known upper bounds
we specifically leveraged in stating our corollaries are:

• If G is nilpotent, then #Fn,k(G;X) ≪k,n,ϵ X
1

a(G)
+ϵ. This follows from [KM04] if G

is in its regular representation, and from [Alb20] in general. (See also [KW22].) An
analogous upper bound was proven for alternate orderings in [Alb20], which includes
the pushforward discriminant.

• If G is in the regular representation and |G| > 4, then #F|G|,k(G;X) ≪k,G,ϵ X
3/8+ϵ

[EV06], and we also have #F|G|,k(G;X) ≪k,G,ϵ X
c0√
|G|

+ϵ
where c0 = 863441

2880
√
9690

≈ 3.045

[Lem24].
• If G is a finite simple group of Lie type, say over Fq with rank r, let G0 denote its

minimal degree primitive permutation representation, say in degree n. From [Lem23,
Theorem 1.1], we have #Fn,k(G0;X) ≪n,k X

Cr for some absolute constant C > 0.
Recall that StabG0 1 =: M0 is a maximal subgroup. If M < G is any maximal
subgroup with |M | < |M0| and G1 the corresponding primitive representation of G
on the cosets of M , then it follows from [Lem23, Lemma 6.3] that

#F[G:M ],k(G1;X) ≪G,k X
Cr

|M0|/|M| .

On combining works of Liebeck and Saxl [Lie85, LS87] with explicit case work involv-
ing the parabolic and other geometric subgroups (aided, e.g., by [BHRD13, KL90])
that, unless G is of type PSU6(Fq) and M is the parabolic subgroup P3, we see

that we always have |M0|/|M | ≫ q1/2. It follows that #F[G:M ],k(G1;X) ≪G,k X
C′r
q1/2

for some absolute C ′ > 0. In particular, this exponent may be made arbitrarily
small on choosing q sufficiently large in terms of r, and every non-minimal primitive
permutation representation of G arises in this way.

In particular, in all three cases, these upper bounds can be made arbitrarily small as G
varies, which means we can produce infinitely many examples of groups satisfying Theorem
1.11(i). This is the main source of the scale of the infinite families in the introduction.

Theorems 1.9 and 1.11 also take average bounds on class group torsion as input, where
|H1

ur(k, T (π))| in Theorem 1.11 can be bounded in terms of certain class group torsion.
Minkowski’s bound for the size of the class group immediately implies

|ClK [ℓ]| ≪ | disc(K/Q)|1/2+ϵ

|H1
ur(k, T (π))| ≪ | disc(F/Q)|d(T̂ )/2+ϵ,

where F is the field of definition for T (π) and d(T̂ ) is the minimum number of generators for
T̂ = Hom(T,Q/Z) as a Galois module (see Lemma 4.1). To our best knowledge, bounds for
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|H1
ur(k, T (π))| have not been directly studied in the literature. We prove results in Section

4 bounding these, in part by relating them to class group torsion.
There are some improvements to Minkowski’s bound for |ClK [ℓ]| in the literature. The

ones that we use most often are as follows.
• |ClK [ℓ]| ≪ | disc(K/Q)|ϵ for K/Q with Gal(K̃/Q) an ℓ-group [KW22]
• |ClK [2]| ≪ | disc(K/Q)|0.2784...+ϵ for [K : Q] ≤ 4 [BST+17]
• |ClK [2]| ≪[K:Q] | disc(K/Q)|1/2−1/2[K:Q]+ϵ for [K : Q] > 4 [BST+17]

See also [Pie05, Pie06, HV06, EV07, Wan21b, Wan20, Gra20, Gra22] for other improvements
over Minkowski’s bound for |ClK [ℓ]|. Strictly speaking, Theorems 1.9 and 1.11 only require
bounds for the average size of class group torsion. There are a few cases in which precise
asymptotics for the average of |ClK [ℓ]| in families are known including 3-torsion for quadratic
extensions due to Davenport and Heilbronn [DH71] and Datskovsky and Wright [DW88], 2-
torsion for cubic extensions due to Bhargava [Bha05] (see also [BSW15]), and 3-torsion for
extensions L for which Gal(L̃/k) is a 2-group containing a transposition due to Lemke Oliver,
Wang, and Wood [LOWW21]. In many other cases, on average improvements to Minkowski’s
bound for |ClK [ℓ]| are known [Sou00, HP17, EPW17, PTW20, Wid18, FW18, An20, FW21,
TZ22, LOTZ23, KT24]. See [PTW21] for an overview of the conjectures on bounding class
group torsion pointwise and on average, and the recent paper of Lemke Oliver and Smith
[LOS24] for the state-of-the art theorems giving average improvements to Minkowski’s bound
for |ClK [ℓ]|.

1.5. Layout of the Paper. We begin with Section 2, where we give the explicit form of
our method. We will prove Theorem 2.1 in this section, which states explicitly what we
need to know in order to add the fibers together to prove an asymptotic growth rate for
#Fn,k(G;X). We state this result in a general language, so that it can be applied new cases
of Conjecture 1 in the future.

We prove Theorem 1.9 in Section 3. The proof is comparatively short, taking advantage
of the wealth of results concerning S3-extensions to quickly check the hypotheses of Theorem
2.1.

Next, we prove important results concerning the ingredients of Theorem 1.11. Section
4 proves Corollary 1.13, along with some other upper bounds for the cohomology groups
|H1

ur(k,M)|. Section 5 develops the notion of a pushforward discriminants, describes the re-
lationship with imprimitive extensions, and proves that Corollary 1.10 follows from Theorem
1.11.

We will then prove Theorem 1.11 in Section 6, building on work of Alberts–O’Dorney
[AO21] to check the hypotheses of Theorem 2.1.

Section 7 contains a list of examples of groups for which we prove Conjecture 1, including
proofs of the corollaries listed in the introduction. This section can be read independent of the
other sections in this paper, so that interested readers can jump straight in to applying our
results to check cases of Conjecture 1. In addition to the corollaries listed in the introduction,
we include a subsection describing the Magma code used to produce Theorem 1.2 and a
subsection summarizing the current best known results towards Conjecture 1 for all transitive
groups of degree 6.

Sections 8 and 9 present evidence that our method has the potential to apply to concen-
trated groups in greater generality. Section 8 discusses what one needs to know about the
concentrated group G to apply the methods of this paper, and in particular relates these
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ingredients to existing conjectures in arithmetic statistics. Meanwhile, Section 9 goes in a
different direction. We use our method to prove Theorem 9.1, which states that for any group
concentrated in an abelian normal subgroup, there exists some admissible ordering inv for
which our methods gives the asymptotic growth rate of #Surinv(Gk, G;X). In particular,
this shows that every solvable group has an ordering for which we can give the corresponding
asymptotic growth rate.

1.6. Notation. The following is a list of conventions and notations we take throughout.

“a permutation group of degree m” implies that m is finite
k will always denote a number field, and is the base field for our extensions.

GF = the absolute Galois group of a field F

L̃ = the Galois closure of a field L over the base field k
G will always denote a transitive permutation group,

and will be of degree n unless otherwise specified
Permutation groups are isomorphic if they are of the same degree m and

are conjugate as subgroups of Sm
StabG(1) :the subgroup of G fixing 1

G ≀H = the wreath product in the wreath representation, i.e.

with stabilizer (StabG(1)×Gm−1)× StabH(1) when H has degree m
disc(F/k) the relative discriminant ideal

|a| = the norm of the ideal a down to Q

Fn,k(G;X) = #{L/k : [L : k] = n, Gal(L̃/k) ∼= G, | disc(L/k)| ≤ X}
disc(π) the relative discriminant of the field fixed by π−1(StabG(1))

discG(π) same as above, when G needs to be specified
Sur(Gk, G) = {π : GK → G surjective continuous homomorphism}

Sur(Gk, G;X) = {π ∈ Sur(GK , G) : | discG(π)| ≤ X}
ind(g) = n−#{orbits of g} for g ∈ Sn

indn(g) same as above, when n needs to be specified
indG(g) same as above for G a transitive group of degree n, when G needs to be specified
a(U) = min

g∈U−{1}
ind(g) for any subset U ⊆ Sn

a(G) is Malle’s predicted value for a in Conjecture 1
a(T ) is Alberts’s predicted value for a in Conjecture 2

χ : Gk → Ẑ× is the cyclotomic character, given by Gal(kQab/k) ⊆ Ẑ×

b(k,G) = the number of orbits of conjugacy classes in G

with respect to the Galois action x.g = gχ(x)

b(k,G) is Malle’s predicted value for b in Conjecture 1
c(k,G) = the value for c in Conjecture 1 whenever it is known to hold
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T (π) = the subgroup T ⊴ G with Galois action x.t = π(x)tπ(x)−1

induced by π : Gk → G.

T (π)∗ = Hom(T (π), µ) as a Galois module, where µ is the group of roots of unity
called the Tate dual of T (π)

q∗ = the pushforward of homomorphisms along the quotient q : G→ G/T

q∗ Sur(Gk, G) = {π ∈ Sur(Gk, G/T ) : π = q ◦ π̃ for some π̃ ∈ Sur(Gk, G)}
q∗ Sur(Gk, G;X) = {π ∈ Sur(Gk, G/T ) : π = q ◦ π̃ for some π̃ ∈ Sur(Gk, G;X)}

q∗ disc = the pushforward discriminat, see (5.2)
Surinv(Gk, G;X) = {π ∈ Sur(Gk, G) : |inv(π)| ≤ X}

b(k, T (π)) = the number of orbits of conjugacy classes in T

with respect to the Galois action x.t = π(x)tχ(x)
−1

π(x)−1

c(k, T (π)) = the value for c in Conjecture 2 whenever it is known to hold

Below are the conventions we use for asymptotic notation. Any implied constants are
always allowed to depend on k and G, unless otherwise specified.

f(X) ∼ g(X) asymptotic, i.e. lim
X→∞

f(X)/g(X) = 1

f(X) ≪ g(X) there exists a constant C s.t. |f(X)| ≤ Cg(X)

f(X) ≪P g(X) same as above, where C depends only on the parameters P
f(X) = O(g(X)) same as f(X) ≪ g(X)

f(X) = OP (g(X)) same as f(X) ≪P g(X)

f(X) ≍ g(X) same as g(X) ≪ f(X) ≪ g(X)

f(X) ≍P g(X) same as g(X) ≪P f(X) ≪P g(X)
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2. The Inductive Framework

In this section, we provide the general analytic framework that we use to piece the fiber-
wise counts back together. This is provided by the following theorem

Theorem 2.1. Let G be finite permutation group with a normal subgroup T ⊴ G, and let
q : G → G/T be the quotient map. Let k be a number field, and for any π ∈ Sur(Gk, G/T ),
let q−1

∗ (π) ⊆ Sur(Gk, G) be the fiber over π.
Assume there exist real numbers a > 0 and b ≥ 1 such that the following three conditions

are satisfied:
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(1) (“Precise counting of the fibers”) For each π ∈ Sur(Gk, G/T ), there is some constant
c(π) ≥ 0 so that

#{ψ ∈ q−1
∗ (π) : | disc(ψ)| ≤ X} = (c(π) + o(1))X1/a(logX)b−1

as X → ∞.
(2) (“Uniform upper bounds on the fibers”) For each π ∈ Sur(Gk, G/T ), there is a constant

f(π) ≥ 0 so that for every X ≥ 2, we have

#{ψ ∈ q−1
∗ (π) : | disc(ψ)| ≤ X} ≤ f(π)X1/a(logX)b−1.

(3) (“Criterion for convergence”) The series∑
π∈Sur(Gk,G/T )

f(π)

converges, where f(π) is as above.
Then

#Sur(Gk, G;X) = (c+ o(1))X1/a(logX)b−1,

where c is given by the convergent series c :=
∑

π∈Sur(Gk,G/T )
c(π).

Remark 2.2. Note that we have allowed c(π) and f(π) to be 0. This is convenient for two
reasons. First, there may be π ∈ Sur(Gk, G/T ) for which the fiber q−1

∗ (π) is empty, in which
case we may take f(π) = 0. We may equivalently restrict our attention in (1) and (2) to
those π in the subset q∗ Sur(Gk, G) ⊆ Sur(Gk, G/T ), which we will often do in what follows.

Second, by allowing c(π) = 0, we are not demanding that every fiber, or indeed that any
fiber, has positive density. If every c(π) = 0, then the conclusion is that #Sur(Gk, G;X) =
o(X1/a(logX)b−1), which is not an asymptotic formula but is a potentially nontrivial upper
bound. This means in particular that Theorem 2.1 can still meaningfully apply even to
non-concentrated groups.

Proof. Since the fibers q−1
∗ (π) for distinct π ∈ Sur(Gk, G/T ) are disjoint, it follows that for

any X ≥ 1, we may write

(2.1) #Sur(Gk, G;X) =
∑

π∈Sur(Gk,G/T )

#{ψ ∈ q−1
∗ (π) : | disc(ψ)| ≤ X}.

Now, let Y ≥ 1 be arbitrary. It follows from our assumptions that there exists a finite subset
Π ⊂ Sur(Gk, G/T ) and some X0 ≥ 2, both depending on Y , such that

(2.2)
∑

π∈Sur(Gk,G/T )
π ̸∈Π

f(π) <
1

4Y

and, for every π ∈ Π and every X ≥ X0, we have∣∣#{ψ ∈ q−1
∗ (π) : | disc(ψ)| ≤ X} − c(π)X1/a(logX)b−1

∣∣ < X1/a(logX)b−1

2Y
.

Indeed, such a set Π exists by the criterion for convergence, and such an X0 exists by the
precise counting of fibers for the finitely many π ∈ Π.
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Inserting this into (2.1) and appealing to the uniform upper bound on fibers, we readily
find for any X ≥ X0 that∣∣∣∣∣#Sur(Gk, G;X)−

∑
π∈Π

c(π)X1/a(logX)b−1

∣∣∣∣∣ < 3X1/a(logX)b−1

4Y
.

We next observe for any π ∈ Sur(Gk, G/T ) that we evidently must have c(π) ≤ f(π). From
this, we deduce both that the series ∑

π∈Sur(Gk,G/T )

c(π)

converges as a consequence of the criterion for convergence, and that∑
π∈Sur(Gk,G/T )

π ̸∈Π

c(π) <
1

4Y

on comparison with (2.2). Pulling everything together, we find for every X ≥ X0,∣∣∣∣∣∣#Sur(Gk, G;X)−
∑

π∈Sur(Gk,G/T )

c(π)X1/a(logX)b−1

∣∣∣∣∣∣ < X1/a(logX)b−1

Y
.

The result follows on taking Y → ∞. □

Theorem 2.1 is stated as a result counting elements of Sur(Gk, G), not number fields.
Even though these problems are equivalent, this choice is deliberate and justified by the way
we treat groups concentrated in an abelian normal subgroup later in the paper. However,
we close this section with a lemma that makes precise the translation between these two
perspectives so that Theorem 2.1 may still be properly regarded as a number field counting
result.

Lemma 2.3. Let G be a transitive permutation group of degree n and let k be a number
field. Given an element π ∈ Sur(Gk, G), we may associate to π the subfield F of k fixed by
π−1(StabG1). This subfield is a degree n extension of k with Galois closure group G, and
disc(F/k) = discG π.

Conversely, given such a field F , there are exactly [NSn(G) ∩ NSn(StabG 1) : CSn(G) ∩
NSn(StabG 1)] elements of Sur(Gk, G) giving rise to F in this manner, where for any subgroup
H ≤ Sn, we let NSn(H) and CSn(H) denote the normalizer and centralizer subgroups of H
in Sn.

Proof. For any transitive permutation group G of degree n, the subgroup StabG 1 has index
n, the conjugates of StabG 1 are StabG 1, . . . , StabG n, whose total intersection is trivial, and
the action of G on the cosets of StabG 1 is permutation isomorphic to G. This implies the
first claim.

For the second, observe that if π and π′ are both associated with F , then there must be
some ϕ ∈ Aut(G) with ϕ(StabG 1) = StabG 1 such that π′ = ϕ ◦ π. This process may be
reversed, so we may equivalently count such automorphisms ϕ. Any such automorphism ϕ
must permute the cosets of StabG 1, so arises via conjugation from an element of Sn. In
fact, because G is a permutation group, this conjugation must be from an element of the
normalizer NSn(G). Moreover, since we must have that ϕ(StabG 1) = StabG 1, it must arise
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from the intersection NSn(G)∩NSn(StabG 1). The kernel of the restriction to this subgroup
is CSn(G) ∩NSn(StabG 1), and the lemma follows. □

3. Wreath Products by S3

In this section, we prove Theorem 1.9 for groups of the form G = S3 ≀ B = (Sm3 ) ⋊
B where B ⊂ Sm is a transitive permutation group of degree m. We begin by fixing a
useful convention. As both G and B are permutation groups, we may assume that the
labels of the element ‘1’ in {1, . . . ,m} and {1, . . . , 3m} are compatible in the sense that
StabG 1 ≤ q−1(StabB 1), where q : G → G/T ∼= B is the quotient map composed with a
fixed isomorphism G/T → B, where T = Sm3 . In this context, the minimal index elements
of G are the transpositions in G, so G is concentrated in T . We begin by establishing the
precise counting of fibers required by Theorem 2.1, that is, we establish Conjecture 2 for
such groups.

Theorem 3.1. Let B be a permutation group of degree m and let G = S3 ≀ B. Let q : G →
G/T ∼= B be the quotient map, where T = Sm3 , and assume that StabG 1 ≤ q−1(StabB 1).
For each π ∈ Sur(Gk, B), there exists a positive constant c(π) > 0 such that

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} ∼ c(π)X.

Proof. Let π ∈ Sur(Gk, B) be fixed, and let F/k be the subfield of k fixed by π−1(StabB 1).
Similarly, given ψ ∈ q−1

∗ (π), let E/k be the subfield of k fixed by ψ−1(StabG 1). By our
assumption that StabG 1 ≤ q−1(StabB 1), E is a cubic extension of F , necessarily with
Galois closure group S3 over F . Moreover, by the conductor-discriminant formula, we have
that disc(E/k) = NmF/k disc(E/F ) · discB(π)3, so E ∈ F3,F (S3;x), where we have set x :=
X/| discB(π)|3 for convenience.

We next observe that Aut(G) acts transitively and freely on the set {ψ ∈ Sur(Gk, G) :

kerψ = GẼ}, where GẼ is the absolute Galois group of the Galois closure Ẽ of E over k.
Appealing to Lemma 2.3, we therefore find that

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} = cG ·#{E ∈ F3,F (S3;x) : Gal(Ẽ/k) ∼= G},

where

(3.1) cG :=
[NS3m(G) ∩NS3m(StabG 1) : CS3m(G) ∩NS3m(StabG 1)]

[NSm(B) ∩NSm(StabB 1) : CSm(B) ∩NSm(StabB 1)]
.

It follows from work of Datskovsky and Wright [DW88] that there is some constant cF > 0
such that

#F3,F (S3;x) ∼ cFx = cF
X

| discB(π)|3

as X → ∞. We claim that the same asymptotic holds for the subset of F3,F (S3;X)
whose Galois closure over k has Galois group G, so that the theorem holds with c(π) =
cGcF/| discB(π)|3.

To prove this claim, we exploit the fact that Datskovsky and Wright also prove an asymp-
totic for the number of fields E ∈ F3,F (S3;x) subject to finitely many local conditions. Let
p be a prime of k that splits completely in F , say as P1 . . .Pm. If E ∈ F3,F (S3;x) is such
that there is some 1 ≤ i ≤ m for which the étale algebra E ⊗F FPi

is the direct sum of FPi

with a quadratic extension, and so that E⊗F FPj
is totally split for each j ̸= i, then we must
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have that Gal(Ẽ/k) ∼= G. In particular, any E ∈ F3,F (S3;x) whose Galois closure group is
not G cannot satisfy this local condition at any prime that splits completely in F .

Let S be a finite set of primes p of k that split completely in F . For each p ∈ S, let Σp

be the subset of F3,F (S3;∞) consisting of those E that do not satisfy the local condition
described above. By [DW88], there are positive constants δp, bounded uniformly away from
1 for p sufficiently large, so that

#{E ∈ F3,F (S3;x) : E ∈ Σp for all p ∈ S} ∼ cF ·
∏
p∈S

δp · x

as X → ∞. From the discussion above, the set on the left-hand side contains all extensions
E ∈ F3,F (S3;x) whose Galois closure group is not G, and the right-hand side may be made
arbitrarily small by choosing S sufficiently large. This gives the claim and the theorem. □

Next, we need a uniform upper bound on the sizes of the fibers. This is essentially provided
by a result of Lemke Oliver, Wang, and Wood.

Lemma 3.2. Let G = S3 ≀ B and T = Sm3 with quotient map q : G → G/T ∼= B. Assume
that StabG 1 ≤ q−1(StabB 1). For each π ∈ Sur(Gk, B), every X ≥ 1, and every ϵ > 0, we
have

#{ψ ∈ q−1
∗ (π) : | discG ψ| ≤ X} = O[k:Q],m,ϵ

(
| disc(k)|m+ϵ|ClF [2]|2/3

| discB(π)|2−ϵ
X

)
where F is the subfield of k fixed by π−1(StabB 1).

Proof. As in the proof of Theorem 3.1, we have that

#{ψ ∈ q−1
∗ (π) : | discG ψ| ≤ X} ≤ cG ·#F3,F (S3;X/| discB(π)|3),

where cG is as in (3.1). On noting that discB(π) = disc(F/k) and cG = Om(1), the result
then follows from [LOWW21, Corollary 3.2]. □

We may now prove Theorem 1.9.

Proof of Theorem 1.9. We use Theorem 2.1 in concert with Lemma 2.3. The precise counting
of fibers is provided by Theorem 3.1, while the uniform upper bounds on fibers are provided
by Lemma 3.2. It therefore remains to check the criterion for convergence. We first note
that, with f(π) determined by Lemma 3.2,∑

π∈Sur(Gk,B)

f(π) ≪k,m,ϵ

∑
π∈Sur(Gk,B)

|ClF [2]|2/3

| discB(π)|2−ϵ

≪m

∑
F∈Fm,k(B;∞)

|ClF [2]|2/3

| disc(F/k)|2−ϵ
,

where we have invoked Lemma 2.3 in the second line. We now recall that in the hypotheses
of Theorem 1.9, we have assumed there is some θ ≥ 0 so that∑

F∈Fm,k(B;X)

|ClF [2]|2/3 ≪m,k X
θ

for everyX ≥ 1. If θ < 2, then the criterion for convergence is satisfied by partial summation,
and this yields the first claim. If θ ≥ 2, then the criterion for convergence is not satisfied,



INDUCTIVE METHODS FOR COUNTING NUMBER FIELDS 21

and we instead find on using Lemma 3.2 directly that

#F3m,k(G;X) ≪k,m,ϵ

∑
F∈Fm,k(B;X1/3)

|ClF [2]|2/3

| disc(F/k)|2−ϵ
X ≪k,m,ϵ X

θ+1
3

+ϵ.

This completes the proof of the second claim, and thus the theorem. □

4. Inductive Bounds for H1
ur

In this section, we prove a number of bounds for H1
ur(k,A) where A is some Gk-module.

For this section, we will use the usual additive notation for the group operation in A. The
group H1

ur(k,A) is closely related to class group torsion. This is clear when A carries the
trivial action, as H1

ur(k,A) = Hom(Clk, A) in this case. For arbitrary Gk-modules, one key
way to understand H1

ur(k,A) is through the restriction map

H1
ur(k,A) → H1

ur(F,A) = Hom(ClF , A),

where F is the field of definition for A as a Galois module. This gives the bound of Lemma 4.1
below that was stated in the introduction.

For an abelian group A, let Â := Hom(A,Q/Z) denote the Pontryagin dual. If A is a
G-module for some group G, then Â is naturally a G-module via (gϕ)(a) = ϕ(g−1a) for
g ∈ G and a ∈ A and ϕ ∈ Â.

Lemma 4.1. Let k be a number field, F/k a finite extension, and A a Gk-module constant
over F . Then

|H1
ur(k,A)| ≤ |A|[F :k] · |HomGk

(ClF , A)|,
and in particular

|H1
ur(k,A)| ≪|A|,ϵ | disc(F/Q)|d(A)/2+ϵ,

where d(A) is the minimal number of generators for Â as a G-module.

Proof. Let G = Gal(F/k). The inflation-restriction sequence gives an exact sequence

0 H1(G,A) H1(k,A) H1(F,A)G.

Thus the kernel of H1
ur(k,A) → H1

ur(F,A)
G is a subgroup of H1(G,A) and hence of size at

most |A|[F :k]. Since GF acts trivially on A, we have that H1
ur(F,A) = Hom(ClF , A), and the

G-invariant elements are precisely the G-equivariant homomorphisms HomG(ClF , A). Thus

|H1
ur(k,A)| ≤ |A|[F :k] · |HomG(ClF , A)|.

If we let F0 be the field of definition of A, since Gal(F0/k) is a subgroup of |Aut(A)|,
we have |A|[F0:k] ≪|A| 1. For any two finite G-modules A,B, we have a natural bijec-
tion HomG(A,B) → HomG(B̂, Â). Thus |HomG(ClF0 , A)| = |HomG(Â, ĈlF0)| is at most
|ClF0 |d(A). Using Minkowski’s bound gives

|H1
ur(k,A)| ≤ |A|[F0:k] · |ClF0 |d(A) ≪|A|,ϵ | disc(F0/Q)|d(A)/2+ϵ ≤ | disc(F/Q)|d(A)/2+ϵ.

□

A weaker version of this bound was used in [Alb20]. Improved bounds for |H1
ur(k,A)| are

the primary reason that our results beat the unconditional upper bounds proven in [Alb20]
for solvable groups.
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4.1. Inductive Bounds. We will get better bounds than Lemma 4.1 by a strategic appli-
cation of the (co)induced module.

We consider an extension of number field E/k. We recall the definition of the induced
module IndkE(A) = Z[Gk]⊗Z[GE ]A. Shapiro’s lemma states that H1(k, IndkE(A))

∼= H1(E,A).
(Recall that when moving between a group and a finite-index subgroup that the induced and
coinduced modules are isomorphic.) We will need the restriction of this to the subgroups of
unramified coclasses.

Lemma 4.2. Let k be a number field with finite extension E. Let A be a GE-module. Then
Shapiro’s isomorphism H1(k, IndkE(A))

∼= H1(E,A) restricts to an isomorphism

H1
ur(k, Ind

k
E(A))

∼= H1
ur(E,A).

Proof. This follows from the commutative diagram [SU14, Equation (3.3)] when the bottom
row is restricted to inertia. In fact, Skinner–Urban state this result in words a couple of
paragraphs below this diagram. □

By making strategic use of Lemma 4.2, we can prove the following bounds for |H1
ur(k,A)|

that are useful in inductive arguments.

Lemma 4.3. Let k be a number field and F/k a finite extension. Let A be a finite Gk-module
constant over F . Let G = Gal(F/k). Suppose

• H ⊂ G is a subgroup,
• M ⊂ A is a sub H-module.

Then

|H1
ur(k,A)| ≤ |H1

ur(k,Core(M))| · |H1
ur(F

H , A/M)| · [A :M ][F
H :k][A : Core(M)]ω(F/k)−1,

where Core(M) =
⋂
g∈Gk

gM is the Gk-core of M and ω(F/k) equals the number of places
ramified in F/k (including infinite places). In particular, we also have

|H1
ur(k,A)| ≪|A|,ϵ |H1

ur(k,Core(M))| · |H1
ur(F

H , A/M)| · | disc(F/Q)|ϵ.

Before proving Lemma 4.3, we discuss how it may be used to improve upper bounds for
|H1

ur(k,A)|. Savings occur in essentially two ways:
• Moving from A to the pair Core(M), A/M reduces the size of the modules being

considered by a factor of [M : Core(M)]. This translates into savings which are
potentially significant for large modules that have few indecomposable factors.

• The presence of FH in place F in the second factor introduces additional savings.
This piece can then be bounded in terms of torsion in ClFH instead of ClF using
Lemma 4.1, which is typically smaller.

Proof. The proof is via using exact sequences to bound the size of various terms. Consider
the homomorphism

ϕ : A→ CoIndGH(A/M) := HomZ[H](Z[Gal(F/k)], A/M)

defined by a 7→ (fa : r 7→ raM). The kernel of this map is

{a ∈ A : ga ∈M for all g ∈ Gal(F/k)} = Core(M).

Thus we have an exact sequence

(4.1) 0 Core(M) A CoIndGH(A/M).
ϕ
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By taking the corresponding long exact sequence of cohomology, we have an exact sequence

H0(k, imϕ) H1(k,Core(M)) H1(k,A) H1(k, imϕ),δ ι∗ ϕ∗

as well as the analogous sequence when k is replaced by any inertia group Iv of Gal(F/k).
Next, we need to consider the unramified parts. We apply the snake lemma to

H1(k,Core(M)) H1(k,A) H1(k, imϕ)

0
∏

ν H
1(Iv,Core(M))/δ(H0(Iν , imϕ))

∏
ν H

1(Iν , A)
∏

ν H
1(Iν , imϕ).

ι∗ ϕ∗

Just looking at the kernels from the snake lemma, this implies

Sel(k,Core(M)) H1
ur(k,A) H1

ur(k, imϕ)

is exact, where Sel(k,Core(M)) fits into the exact sequence

0 H1
ur(k,Core(M)) Sel(k,Core(M))

∏
ν δ(H

0(Iν , imϕ)).

Thus,

(4.2) |H1
ur(k,A)| ≤ |Sel(k,Core(M))| · |H1

ur(k, imϕ)|.
We now bound |Sel(k,Core(M))|, starting with

|Sel(k,Core(M))| ≤ |H1
ur(k,Core(M))| ·

∏
ν

|δ(H0(Iν , imϕ))|.

If ν is unramified in F/k then the connecting homomorphism δ is trivial on H0(Iν , imϕ),
and otherwise

|δ(H0(Iv, imϕ))| ≤ | imϕ| = [A : Core(M)].

Thus we have bounded

(4.3) |Sel(k,Core(M))| ≤ |H1
ur(k,Core(M))|[A : Core(M)]ω(F/k).

In order to bound H1
ur(k, imϕ), we obtain another exact sequence from (4.1),

H0(k, cokerϕ) H1(k, imϕ) H1(k,CoIndGH(A/M)).

The analogous exact sequence for Iv in place of k, and commuting restriction maps, imply
we have a map

H1
ur(k, imϕ) H1

ur(k,CoIndGH(A/M)).

whose kernel has size at most |H0(k, cokerϕ)|. Thus,

|H1
ur(k, imϕ)| ≤ |H0(k, cokerϕ)| · |H1

ur(k,HomZ[H](Z[Gal(F/k)], A/M))|.
We have

|H0(k, cokerϕ)| ≤ | cokerϕ| =
|HomZ[H](Z[Gal(F/k)], A/M)|

| imϕ|
=

[A :M ][F
H :k]

[A : Core(M)]
.

Shapiro’s Lemma restricted to the unramified classes (Lemma 4.2) implies

H1
ur(k,HomZ[H](Z[Gal(F/k)], A/M)) ∼= H1

ur(F
H , A/M).
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Thus we have shown

(4.4) |H1
ur(k, imϕ)| ≤ [A :M ][F

H :k]

[A : Core(M)]
· |H1

ur(F
H , A/M)|.

Multiplying (4.3) and (4.4), and applying (4.2), gives

|H1
ur(k,A)| ≤ |H1

ur(k,Core(M)) · |[A : Core(M)]ω(F/k)−1 · [A :M ][F
H :k] · |H1

ur(F
H , A/M)|,

concluding the proof of the upper bound.
For the ≪ upper bound, we use the fact that G acts faithfully on A, and thus [FH : k] =

|G|/|H| is bounded in terms of |A|. Also cω(F/k) ≪c,ϵ disc(F/Q)ϵ for any fixed constant c.
This gives the ≪ upper bound. □

4.2. Applications. In several of the examples detailed in Section 7, we reference Lemma
4.3 directly so that we can choose M and H optimally for the given situation. However, in
practice it can be difficult to determine which pairs M , H are optimal for using Theorem
1.11.

We first give a simple lemma to let us compare between a module and its submodules.

Lemma 4.4. Let ι : A1 ↪→ A2 be an injective homomorphism of Gk-modules. Then

|H1
ur(k,A1)| ≤ [A2 : A1] · |H1

ur(k,A2)|.
In particular,

|H1
ur(k,A1)| ≪|A2| |H1

ur(k,A2)|.

Proof. The long exact sequence of cohomology gives an exact sequence

H0(k,A2/A1) → H1(k,A1) → H1(k,A2),

and thus the kernel N of H1
ur(k,A1) → H1

ur(k,A2) is surjected onto by a subgroup of
H0(k,A2/A1). Thus,

|H1
ur(k,A1)| ≤ |N | · |H1

ur(k,A2)|
≤ |H0(k,A2/A1)| · |H1

ur(k,A2)|
≤ |A2/A1| · |H1

ur(k,A2)|.
□

Corollary 1.13 in the introduction includes some special cases for which we know how to
make an optimal choice for M and H in Lemma 4.3.

Proof of Corollary 1.13. Part (i): LetM0 = A. We define Gk-modulesMi and Ni recursively,
such that Ni is the Gk-module generated by g.m −m for g ∈ Gk and m ∈ Mi and Mi+1 =
Core(Ni). We then apply Lemma 4.3 with A = Mi, and H = G = Gal(F/k), and the M
from Lemma 4.3 being our Ni. Since Gk acts trivially on Mi/Ni, we have |H1

ur(k,Mi/Ni)| =
|Hom(Clk,Mi/Ni)| ≪k,|A| 1. Thus we obtain

|H1
ur(k,Mi)| ≪|A|,ϵ |H1

ur(k,Core(Ni))||H1
ur(k,Mi/Ni)|| disc(F/Q)|ϵ

≪k,|A|,ϵ |H1
ur(k,Mi+1)|| disc(F/Q)|ϵ.

If we let A1 = A and let ΓjG(A) be the Gk-module generated by g.m − m for g ∈ Gk and
m ∈ Γj−1

G (A), then we can see inductively that Mj ⊂ ΓjG(A). That A is nilpotent means that
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ΓjG(A) for some j, and thus Mj = 0. In particular this j is bounded in terms of |A|, and so
we can apply the above inequality inductively to obtain the statement of part (i).

Part (ii): Every proper subgroup of a simple module is necessarily core-free. Given a simple
module A of exponent e, choose some element a ∈ A of order e. By the classification of finitely
generated abelian groups, there exists a proper subgroup M ≤ A for which A = ⟨a⟩ ⊕M as
abelian groups. We know that Core(M) = 1, so Lemma 4.3 with this M and H = 1 implies

|H1
ur(k,A)| ≪|A|,ϵ |H1

ur(F,A/M)| · | disc(F/Q)|ϵ.

Since GF acts trivially on A and hence A/M ∼= ⟨a⟩, we have

|H1
ur(k,A)| ≪|A|,ϵ |Hom(ClF , ⟨a⟩)| · | disc(F/Q)|ϵ = |ClF [e]| · | disc(F/Q)|ϵ.

Part (iii): We are given an embedding A′ ↪→ IndkF (A). Lemmas 4.4 and 4.2 imply that

|H1
ur(k,A

′)| ≪|IndkF (A)| |H1
ur(k, Ind

k
F (A))| = |H1

ur(F,A)| = |Hom(ClF , A)|.

□

5. The Pushforward Discriminant

Let G be a finite permutation group, and T a normal subgroup of G. We give G/T the
regular permutation action (i.e. by left mutiplication on the set of group elements). We
expressed the inputs of Theorem 1.11 in terms of the image

q∗ Sur(Gk, G;X) = {π ∈ Sur(Gk, G/T ) : π = q∗ψ for ψ ∈ Sur(Gk, G;X)},
which under the Galois correspondence is (up to multiplicity) the set of G/T -extensions L/k
in k̄ for which there exists a Galois G-extension F/k with F T = L and | disc(F StabG(1)/Q)| ≤
X. The asymptotics of this particular set have not been studied previously to our knowledge.

The primary difficulty is that ordering by the discriminant of a lift to a G-extension need
not agree with a discriminant ordering for G/T -extensions. The purpose of this section is to
define the pushforward discriminant q∗ disc on Sur(Gk, G/T ) in order to have an invariant
we can relate to the discriminant of a G-extension lifting a G/T -extension. The point of the
definition will be that

(5.1) q∗ Sur(Gk, G;X) ⊆ {π ∈ Sur(Gk, G/T ) : q∗ disc(π) ≤ X}.
For a prime ideal p of k, let kp denote the completion of k at p. For each prime ideal p

of k, we fix a choice of k-homomorphism k̄ → kp giving a fixed choice of homomorphsim
Gkp → Gk. Given a ψ ∈ Sur(Gk, G), the relative discriminant ideal disc(ψ) is given as a
product of local factors

disc(ψ) =
∏
p

pfp(ψ),

where the product is over prime ideals p of k, and fp(ψ) is the local Artin conductor at p
of the composition of ψ with the permutation representation of G. In particular, at a tame
prime p we have fp(ψ) = ind(ψ(τp)), where τp is a generator of tame inertia.

Let q : G → H be a group homomorphism. For πp ∈ Hom(Gkp , H) and π ∈ Hom(Gk, H),
we define

q∗fp(πp) = min
ψp∈Hom(Gkp ,G)

q◦ψp=πp

fp(ψp) and q∗ disc(π) =
∏
p

pq∗fp(πp),(5.2)



26 B. ALBERTS, R.J. LEMKE OLIVER, J. WANG, AND M.M. WOOD

where by convention q∗fp(πp) = ∞ if there does not exist a ψp ∈ Hom(Gkp , G) lifting πp ∈
Hom(Gkp , H). This immediately ensures (5.1).

We define the pushforward of the index function to be

q∗ ind(gT ) = min
hT=gT

ind(h),(5.3)

so that for tame places
νp(q∗ discπ) ≥ q∗ ind(q∗π(τp))

for τp any generator of the tame inertia group at p. We then obtain the following conjecture
following from a heuristic of Ellenberg and Venkatesh [EV05, Question 4.3].

Conjecture 3 (The Weak Form of Malle’s Conjecture for Pushforward Discriminants).
Let k be a number field, G a finite permutation group with normal subgroup T ⊴ G, and
q : G→ G/T the quotient map. Then

#{π ∈ Sur(Gk, G/T ) : q∗ disc(π) ≤ X} ≪ϵ X
1/a(G−T )+ϵ,

where a(G− T ) = ming∈G−T ind(g).

Ellenberg and Venkatesh’s heuristic is known to hold for nilpotent groups, from which
Conjecture 3 for G/T nilpotent follows. This follows from the discrimnant multiplicity
conjecture for nilpotent groups [KW22, Theorem 1.6], or is proven directly by Alberts in
[Alb20, Corollary 5.2] (with N = G a nilpotent group).

Remark 5.1. Ellenberg and Venkatesh also discuss a lower bound as part of their heuristic.
However, the lifting condition in the pushforward discriminant makes it slightly larger than
the general invariants considered by Ellenberg and Venkatesh. We cautiously expect that the
lower bound ≫ϵ X

1/a(G−T )−ϵ should hold for each positive ϵ, as the inequality νp(q∗ discπ) ≥
minπ(Ip)=⟨gT ⟩ ind(g) is an equality for a positive proportion of places (namely, those congruent
to 1 mod |G|). For the purposes of this paper, we only require upper bounds.

5.1. Imprimitive Extensions. Given a finite permutation group G, with subgroup S =
StabG(1), a G-extension K/k has a proper, non-trivial intermediate extension L if and only
if the is a subgroup S ′ such that S ⪇ S ′ ⪇ G. In this case, we can let T = ∩g∈GgS ′g−1,
give G/T the permutation action of left multiplication on the left cosets of S ′, and L/k is
a G/T -extension. Let q : G → G/T . Then we can compare q∗ disc to the discriminant of a
G/T -extension.

Proposition 5.2. Let k be a number field. Let G,S, S ′, T, q be as just above. Let n = [G : S]
and m = [G : S ′]. Then for all X > 0,

Surq∗ disc(Gk, G/T ;X) ⊆ Sur(Gk, G/T ;X
m
n ),

where G/T is viewed as the permutation group in degree m, so the right-hand side is ordered
with respect to discG/T .

Proof. Let F be the field fixed by π−1(S ′). By the definition of q∗ disc (5.2), it follows that
for each prime ideal p of k

|pνp(q∗ discπ)| = min
ψp∈Hom(Gkp ,G)

q◦ψp=πp

| disc(ψp)|.
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Let Lψp/kp be the G-étale algebra corresponding to ψp. Notice that the subalgebra LS′

ψp
fixed

by S ′ is necessarily the localization Fp. Then the proposition follows from

| disc(Lψp)| ≥ | disc(Fp/kp)
[S′:S]|.

Thus, |q∗ disc(π)| ≥ | disc(F/k)|[S′:S] = | discG/T (π)|n/m and the proposition follows. □

5.2. Corollary 1.10 follows from Theorem 1.11 and Corollary 1.13. Let G be an
imprimitive permutation group with tower type (A,B), that is G ⊆ A ≀B with G surjecting
onto B and Am ∩G surjecting onto A through each projection map. Suppose that∑

F∈Fm,k(B;X)

|Hom(ClF , A)| ≪ Xθ.

Let S = StabG(1), and S ′ be the preimage of StabB(1) in G. Then let T = Am ∩ G, so
T = ∩g∈GgS ′g−1. We apply Proposition 5.2 to show that

q∗ Sur(Gk, G;X) ⊆ Sur(Gk, G/T ; cX
1/|A|)

for some constant c > 0 depending only on [k : Q] and n.
The subgroup Am ≤ A ≀B carries the induced module structure by definition, that is

A ≀B = IndB1 (A)⋊B.

Given any F ∈ Fm,k(B;X) corresponding to some π ∈ Sur(Gk, B), we then necessarily have
and isomorphism of Gk-modules

IndB1 (A)(π) = IndkF (A),

where A carries the trivial GF -action. We now see that our choice of T = Am ∩ G =
IndB1 (A) ∩ G necessarily admits an embedding T (π) ↪→ IndkF (A) as Gk-modules. Corollary
1.13(iii) then gives

|H1
ur(k, T (π))| ≪m,|A| |Hom(ClF , A)|.

Putting these together, we find that∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪m,|A|

∑
π∈Sur(Gk,G/T ;cX1/|A|)

|Hom(ClF , A)|

≪m,|A|,k X
θ/|A|.

Clearly θ < |A|
a(Am∩G)

if and only if θ/|A| < 1/a(Am ∩ G) = 1/a(T ), so the conclusions of
Corollary 1.10 follow directly from the conclusions of Theorem 1.11.

6. Groups concentrated in an Abelian Subgroup

When T is an abelian group, Conjecture 2 has been completely solved by Alberts and
O’Dorney [AO21]. In this section, we prove the upper bound of Conjecture 2 for abelian T
with enough uniformity for our desired applications.

Theorem 6.1. Let G be a transitive subgroup of degree n, T ⊴ G an abelian normal subgroup
with quotient map q : G→ G/T , and π ∈ q∗ Sur(Gk, G). Then

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} = On,[k:Q],ϵ

(
|H1

ur(k, T (π))|
(q∗ discG(π))1/a(T )−ϵ

X1/a(T )(logX)b(k,T (π))−1

)
.

Together with Theorem 2.1, this will be sufficient to prove Theorem 1.11.
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Proof of Theorem 1.11. Let T ⊴ G be an abelian normal subgroup for which the hypotheses
of Theorem 1.11 is satisfied. We will prove that the hypotheses of Theorem 2.1 are also
satisfied with a = a(T ) and b = maxπ b(k, T (π)).

Alberts gave a bijection between the fiber and “surjective corssed homomorphisms valued
in the Galois module T (π) in [Alb21, Lemma 1.3], and further proves that this respects the
coboundary relation in [Alb21, Lemma 3.5] to conclude that

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X}

= |T (π)/T (π)G| ·#{[f ] ∈ H1(k, T (π)) : f ∗ π surjective, | discG(f ∗ π)| ≤ X}.

The asymptotic growth rate cX1/a(T )(logX)b(k,T (π))−1 for this function is given directly by
[AO21, Theorem 1.1 and Corollary 1.2] for T abelian with no local restrictions. We remark
that, for any π with b(k, T (π)) < b, we may take c(π) = 0 so that Theorem 2.1(1) is verified
for each fiber, even if that fiber does not contribute a positive proportion of extensions.

Remark 6.2. [AO21] was originally published with an error in the main theorem, which
has been corrected in the Corrigendum [AO23]. This error applied to local restrictions -
in certain cases (generalizing the Grunwald-Wang counterexample), the generating Dirichlet
series cancels out completely and there are no elements of H1(k, T (π)) satisfying that family
of local conditions.

In our setting, we are not considering any local restrictions whatsoever, which is equivalent
to taking Lp = H1(kp, T (π)) for all places p. This is a viable family of local restrictions in
the sense of [Woo09, AO23], as certainly the trivial class 0 satisfies these local conditions.
For this reason, the results we are using from [AO21] are correct as stated in the original
publication.

Theorem 2.1(2) follows from Theorem 6.1, with

f(π) ≪n,[k:Q],ϵ
|H1

ur(k, T (π))|
(q∗ discG(π))1/a(T )−ϵ

if π ∈ q∗ Sur(Gk, G), and f(π) = 0 if π ̸∈ q∗ Sur(Gk, G) (as the fiber is empty in this case).
Recall that we have assumed there is some θ ≥ 0 so that∑

π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪n,k X

θ.

From this, we find that∑
π∈q∗ Sur(Gk,G;X)

f(π) ≪n,k,ϵ

∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))|

(q∗ discG(π))1/a(T )−ϵ
≪n,k,ϵ 1 +Xθ−1/a(T )+ϵ.

In particular, the criterion for convergence (Theorem 2.1(3)) holds if θ < 1
a(T )

. Thus, we
may apply Theorem 2.1 in this case, which yields Theorem 1.11(i).

If θ ≥ 1/a(T ), we bound the sum of the fibers directly as

#Sur(Gk, G;X) =
∑

π∈q∗ Sur(Gk,G;X)

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X}

≪n,k,ϵ

∑
π∈q∗ Sur(Gk,G;X)

f(π)X1/a(T )+ϵ

≪n,k,ϵ X
θ+ϵ,



INDUCTIVE METHODS FOR COUNTING NUMBER FIELDS 29

proving Theorem 1.11(ii). □

The remainder of this section is dedicated to proving Theorem 6.1.

6.1. Bounding by local factors. We will use the cohomological framework of [AO21] to
access the fibers, and bound them in terms of the Euler product of local factors

MBk(T, π; s) =
∏
p

1

|T |

 ∑
ψp∈q−1

∗ (π|Gkp
)

| discG(ψp)|−s

 ,(6.1)

where discG(ψp) is the discriminant of the G-étale algebra corresponding to ψp over kp,
and the product is over all finite and infinite places of k. This is an analog to the Malle–
Bhargava local series [Bha10, Woo16], and is equivalent to the Euler product appearing in
[Alb21, Theorem 3.3].

Lemma 6.3. Let G be a transitive subgroup of degree n, T ⊴ G an abelian normal subgroup
with quotient map q : G→ G/T , and π ∈ q∗ Sur(Gk, G).

Let {am} be the Dirichlet coefficients of MBk(T, π; s), that is MBk(T, π; s) =
∑
amm

−s.
Then

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} ≤ |H1

ur(k, T (π))| · |T [2]|n ·
∑
m≤X

am.

Proof. Alberts gave a bijection between the fiber and a certain set of crossed homomorphisms
in [Alb21, Lemma 1.3]. Any nonempty fiber q−1

∗ (π) containing an element π̃ is parametrized
by crossed homomorphisms Z1(k, T (π̃)) valued in the Galois module T (π̃) with action x.t =
π̃(x)tπ̃(x)−1. Alberts used this to define a twisted version of the number field counting
function predicting the asymptotic growth rate of the fibers via the set

Sur(Gk, T, π̃;X) := {f ∈ Z1(k, T (π̃)) : f ∗ π̃ surjective, | discG(f ∗ π̃)| ≤ X}.

Here, (f ∗ π̃)(x) = f(x)π̃(x) is the pointwise product of these maps and is necessarily a
homomorphism. We remark that, in the case that T is abelian, the module T (π̃) depends
only on π so we will often abuse notation write T (π). While the set itself depends on the
choice of lift π̃, this set is in bijection with the fiber {ψ ∈ q−1

∗ (π) : | discG(ψ)| ≤ X} so that
the cardinality is independent of the choice of lift.

The srujectivity and discriminant conditions are shown to factor through the coboundary
relation in [Alb21, Lemma 3.5], which implies

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} = |T (π)/T (π)G| ·#{[f ] ∈ H1(k, T (π)) : f ∈ Sur(Gk, T, π̃;X)}

≤ #{[f ] ∈ H1(k, T (π)) : | discG(f ∗ π)| ≤ X}.

Thus, it suffices to bound the counting function

H1(k, T, π̃;X) := {[f ] ∈ H1(k, T (π)) : | discG(f ∗ π̃)| ≤ X}.

This is precisely the type of counting function considered by Alberts–O’Dorney in [AO21],
with no local restrictions and admissible ordering given by discπ̃(f) = disc(f ∗ π̃).

We need to use the description of the generating Dirichlet series for H1(k, T, π̃;X) given by
[AO21, Theorem 2.3], which we summarize here: Let H1(Ak, T (π)) be the restricted direct
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product{
([fp]) ∈

∏
p

H1(kp, T (π)) : [fp] ∈ H1
ur(kp, T (π)) for all but finitely many p

}
.

[AO21, Theorem 2.3] uses Poisson summation to prove that, for sufficiently nice functions
w : H1(Ak, T (π)) → C, it follows that∑

f∈H1(k,T (π))

w(f) =
|H0(k, T (π))|
|H0(k, T (π)∗)|

∑
h∈H1(k,T (π)∗)

ŵ(h)

where ŵ is the Fourier transform of w with respect the to Tate pairing, for f ∈ H1(k, T (π))
we take w(f) = w((f |Gkp

)p) for (f |Gkp
)p ∈ H1(AK , T (π)), and T (π)∗ = Hom(T (π), µ) is the

Tate dual module of T (π) with values in the group of roots of unity.
Let w(f) = | discG(f ∗π̃)|−s for some s ∈ C. Alberts–O’Dorney show that [AO21, Theorem

2.3] applies to this function in [AO21, Proposition 4.1]. This function is multiplicative in
the sense of [AO21, Definition 3.1], which implies its Fourier transforms are Euler products.
More precisely, the Fourier transforms are given by

ŵ(h) =
∏
p

 1

|H0(k, T (π))|
∑

[f ]∈H1(kp,T (π))

⟨f, hp⟩| discG(f ∗ π̃p)|−s


for each h ∈ H1(k, T (π)∗) with hp = h|Gkp
, π̃p = π̃|Gkp

, and

⟨, ⟩ : H1(kp, T (π))×H1(kp, T (π)
∗) → µ

the local Tate pairing.
Moreover, this w function is periodic with respect to the unramified coclasses by [AO21,

Proposition 4.1], which implies its Fourier transform has finite support

H1
ur∗(k, T (π)

∗) = H1(k, T (π)∗) ∩
∏
p

H1
ur(kp, T (π))

⊥,

the annihilator of the unramified coclasses in H1(k, T (π)∗) under the Tate pairing.
All together, these facts give a concrete description of the generating series∑

f∈H1(k,T (π))

| discG(f ∗ π̃)|−s = |H0(k, T (π))|
|H0(k, T (π)∗)|

∑
h∈H1

ur∗ (k,T (π)
∗)

ŵ(h),

with

ŵ(h) =
∏
p

 1

|H0(k, T (π))|
∑

[f ]∈H1(kp,T (π))

⟨f, hp⟩| discG(f ∗ π̃p)|−s
 .

Let {am(h)} be the Dirichlet coefficients for ŵ(h), so that ŵ(h) =
∑
am(h)m

−s and

#H1(k, T, π̃;X) =
|H0(k, T (π))|
|H0(k, T (π)∗)|

∑
h∈H1

ur∗ (k,T (π)
∗)

∑
m≤X

am(h).

The Tate pairing is valued in roots of unity, so in particular |⟨f, h⟩| = 1 = ⟨f, 0⟩ for any
f, h. This directly implies that the coefficients satisfy |am(h)| ≤ am(0). Moreover, [Alb21,
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Proposition 3.6](ii) together with the bijection between crossed homomorphisms and fibers
given by [Alb21, Lemma 1.3] implies that ŵ(0) = MBk(T, π; s), so that am(0) = am.

Thus, we have shown

#H1(k, T, π̃;X) ≤ |H0(k, T (π))|
|H0(k, T (π)∗)|

|H1
ur∗(k, T (π)

∗)|
∑
m≤X

am.

Finally, we apply the the Greenberg–Wiles identity [NSW13, Theorem (8.7.9)] to control
the size of the dual Selmer group H1

ur∗(k, T (π)
∗). This identity states that the dual Selmer

group is related to the usual Selmer group by
|H1

ur(k, T (π))|
|H1

ur∗(k, T (π)
∗)|

=
|H0(k, T (π))|
|H0(k, T (π)∗)|

∏
p

|H1
ur(kp, T (π))|

|H0(kp, T (π))|
.

The product is supported only on infinite primes, of which there are at most n. We then
conclude

#H1(k, T, π̃;X) ≤ |H1
ur(k, T (π))|

∏
p|∞

|H0(kp, T (π))|
∑
n≤X

am

≤ |H1
ur(k, T (π))| · |T [2]|n

∑
m≤X

am.

□

6.2. Complex Analysis. It now suffices to prove an upper bound for the sum of coefficients
of MBk(T, π; s), so that Theorem 6.1 will follow from Lemma 6.3. We will do so by applying a
Tauberian theorem to a smoothed sum of the coefficients, which means we need to understand
the structure of MBk(T, π; s) as a meromorphic function.

It is proven in [Alb21, Theorem 3.3] that MBk(T, π; s) convergese absolutely on Re(s) >
1/a(T ) and has a meromorphic continuation to an open neighborhood of Re(s) ≥ 1/a(T )
with a pole at s = 1/a(T ) of order b(k, T (π)). We will need some more information in order
to make the dependence on π explicit, so we prove the following lemma constructing the
meromorphic continuation.

Lemma 6.4. Let G be a transitive subgroup of degree n, T ⊴ G an abelian normal subgroup
with quotient map q : G → G/T , and π ∈ q∗ Sur(Gk, G). Then there exist Dirichlet series
Q(T, π; s) and G(T, π; s) and a Galois representation ρa(T ) for which

MBk(T, π; s) = Q(T, π; s)L(a(T )s, ρa(T ))G(T, π; s),

and such that
(i) For any integer d ≥ 0, the dth derivative of Q(T, π; s) is bounded by

|Q(d)(T, π; s)| ≪n,d,[k:Q],ϵ |q∗ disc(π)|−Re(s)+ϵ

for any ϵ > 0 on the region Re(s) > 0,
(ii) For any integer d ≥ 0, the dth derivative of G(T, π; s) is bounded by

|G(d)(T, π; s)| ≪n,d,ϵ 1

on the region Re(s) > 1
a(T )+1

+ ϵ for any ϵ > 0, and
(iii) For a positive integer d > 0, the representation ρd : Gk → GL(C[Ad]) is the permutation

representation given by the Galois action on Ad = {t ∈ T : ind(t) = d} defined by
g : t 7→ (π̃(g)tπ̃(g)−1)χ(g

−1) for some lift π̃ ∈ q−1
∗ (π).
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The functions Q(T, π; s) and G(T, π; s) will be given explicitly in the proof. We chose to
state the lemma in this way so that it can be more directly applied in the proof of Theorem
6.1. The proof is similar to that of [Alb21, Lemma 3.5] and [Alb24, Corollary 3.3], although
the detailed information we require for Q(T, π; s) is not present in these pre-existing results.

Proof. We first consider the Euler factors for tame primes which are not ramified in π. The
tame decomposition group at such p has presentation

Gtame
kp = ⟨τp,Frp : FrpτFr−1

p τ−|p|⟩.

If p | p for some rational prime p, local class field theory implies that the local cyclotomic
character Gkp → Q×

p sends Frp 7→ |p|. Thus, for any prime p ∤ |T | it follows that χ(Frp) ≡ |p|
mod |T |, so we may equivalently write

Gtame
kp = ⟨τp,Frp : FrpτFr−1

p τ−χ(Frp)⟩.

The Euler factors can then be written as
1

|T |
∑

ψp∈q−1
∗ (π|Gkp

)

| discG(ψp)|−s =
1

|T |
∑
τ,y∈G

yτy−1τ−χ(Frp)=1
τT=π(τp)
yT=π(Frp)

|p|− ind(τ)

whenever p ∤ |T |∞. The additional assumption that p is unramified in π implies π(τp) = 1,
so that

1

|T |
∑

ψp∈q−1
∗ (π|Gkp

)

| discG(ψp)|−s =
1

|T |
∑

τ∈T, ,y∈G
yτy−1τ−χ(Frp)=1

yT=π(Frp)

|p|− ind(τ)s.

Consider that T abelian implies yτy−1 = π̃(Frp)τ π̃(Frp), as yT = π̃(Frp)T = π(Frp). Thus, if
ind(τ) = d then yτy−1τ−χ(Frp) = 1 if and only if τ = (π̃(Frp)τ π̃(Frp)

−1)χ(Frp) is a fixed point
of the permutation action on Ad. By the definition of ρd as the permutation representation,
this implies

1

|T |
∑

ψp∈q−1
∗ (π|Gkp

)

| discG(ψp)|−s =
1

|T |
∑
d≥0

∑
y∈G

yT=π(Frp)

∑
τ∈Ad

τ fixed point

|p|−ds

=
∑
d≥0

trρd(Frp)|p|−ds

= 1 +
∑
d≥1

trρd(Frp)|p|−ds,

where the last equality follows from A0 = {1}.
Consider that p is ramified in π if and only if p | q∗ discG(π) by definition. We now set

Q(T, π; s) =
∏

p|q∗ discG(π)|T |∞

 1

|T |
∑

ψp∈q−1
∗ (π|Gkp

)

| discG(ψp)|−s


· det

(
I −

(
ρa(T )(Frp)|C[Aa(T )]Ip

)
|p|−a(T )s

)
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and

G(T, π; s) =
∏

p∤q∗ discG(π)|T |∞

(
1 +

∑
d≥1

trρd(Frp)|p|−ds
)
det
(
I − ρa(T )(Frp)|p|−a(T )s

)
.

By construction, these formally satisfy the relation

MBk(T, π; s) = Q(T, π, s)L(a(T )s, ρa(T ))G(T, π; s),

and so this identity holds on the region of absolute convergence for MBk(T, π; s) (i.e. for
Re(s) > 1/a(T )). It now suffices to check the properties in parts (i) and (ii) (since part (iii)
is just the definition for ρd).

The Dirichlet series Q(T, π; s) is in fact a Dirichlet polynomial, being a finite product of
polynomials in |p|−s. Writing Q(T, π; s) =

∑
a απ(a)|a|−s, we immediately conclude that

|Q(d)(T, π; s)| =

∣∣∣∣∣∑
a

απ(a)(− log |a|)d|a|−s
∣∣∣∣∣

≪d,ϵ

∑
a

|απ(a)||a|−Re(s)+ϵ

≪d,ϵ #{a : απ(a) ̸= 0} ·max
a

|απ(a)| ·
(

min
απ(a)̸=0

|a|
)−Re(s)+ϵ

on the region Re(s) > 0. Thus, it suffices to give bounds for these three factors.
• We first bound the length of the sum, i.e. the number of a for which απ(a) ̸= 0, by

bounding the number of terms in each Euler factor. If p is a tamely prime in π, then
there are at most

|Hom(Gkp , G)| · (dim ρa(T ) + 1) ≤ |G|3

terms. If p | |T | is a wildly ramified prime, then there are similarly at most

|Hom(Gkp , G)| · (dim ρa(T ) + 1) ≤ |G|d(Gkp )+1,

where d(Gkp) is the number of generators for the decomposition group at p, a number
depending only on [k : Q]. If p | ∞ is an infinite prime, then discG(ψp) = 1 by
convention, so this contributes at most to the coefficients themselves and not the
number of terms. Overall, this implies

#{a : απ(a) ̸= 0} ≤
∏
p||T |

|G|d(Gkp )+1
∏
p∤|T |

p|q∗ disc(π)

|G|3

≪n,[k:Q] |G|3ω(q∗ disc(π))

≪n,[k:Q],ϵ |q∗ disc(π)|ϵ.

• Next, we bound the values of the function |απ(a)|. For each finite prime p the
coefficient of | discG(ψp)| is 1, while the coefficient for |p|−ds in the determinant is
bounded in absolute value by |G| by ρd a permutation representation (so any matrix
in its image is a permutation matrix of dimension |Ad| ≤ |G|). Distributing implies
that the coefficient is no more than 1 times |Hom(Gkp , G)| · |G| (an upper bound for
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the number of possible products of terms). In this case, we must also consider the
infinite places, where we note that if p | ∞ then 1

|T (π)|
∑

f∈Z1(kp,T (π))

| discG(f ∗ π̃|Gkp
)|−s
 =

|Hom(Gkp , G)|
|T |

≤ |G|

by the infinite decomposition groups all being cyclic. Thus, we can use a similar
upper bound to the last bullet point to show that

max
a

|απ(a)| ≤
∏
p|∞

|G|
∏
p||T |

|G|d(Gkp )+1
∏
p∤|T |

p|q∗ disc(π)

|G|3

≪n,ϵ |q∗ disc(π)|ϵ.
• Finally, we determine the smallest integer in the support of απ. This is the product

of the smallest degree terms from each Euler factor. If p is not ramified in π, then
certainly exists an unramified lift ψp ∈ q−1

∗ (π|Gkp
) (because Gal(kurp /kp) = ⟨Frp⟩ is a

free group) which satisfies discG(ψp) = 1. In these cases the Euler factor would have
a constant term. if p is ramified in π, then the minimum degree term is given by

min
ψp∈q−1

∗ π|Gkp

| discG(ψp)|.

Appealing to the definition of the pushforward discriminant (5.2), this is given by

min
ψp∈q−1

∗ π|Gkp

| discG(ψp)| = min
ψp∈q−1

∗ π|Gkp

|p|fp(ψp)

= |p|q∗fp(ψp)

= |p|νp(q∗ discG(π).

Multiplying these together, we have shown that |q∗ disc(π)| = minαπ(a) ̸=0 |a|.
All together, we have proven that

Q(d)(T, π; s) ≪n,d,[k:Q],ϵ |q∗ discG(π)|−Re(s)+3ϵ

on the region Re(s) > 0, so replacing ϵ with ϵ/3 concludes the proof of part (i).
Part (ii) is proven similarly. Write G(T, π; s) =

∑
a βπ(a)a

−s. G(T, π; s) is a product over
tame places, so by the same argument as above each coefficient in the Euler product at p is
bounded above by |G|3. Moreover, the smallest degree term appearing in this Euler product
is |p|−(a(T )+1)s, as the |p|−a(T )s terms cancel out after distributing. Let f be the characteristic
function supported on ideals of k for which p | a ⇒ νp(a) ≥ a(T ) + 1. Then

|βπ(a)| ≤ |G|3ω(a)f(a) ≪n,ϵ f(a)|a|ϵ.
For any d ≥ 0, we have

G(d)(T, π; s) =
∑
a

βπ(a)(− log |a|)d|a|−s.

The corresponding absolute series is bounded by∑
a

|βπ(a)(log |a|)d|a|−s| ≪n,d,ϵ

∑
a

f(a)|a|ϵ|a|ϵ|a|−Re(s)
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=
∏
p

1 +
∞∑

e=a(T )+1

|p|e(−Re(s)+2ϵ)

 ,

where converges absolutely on the region Re(s) > 1
a(T )+1

and is independent of π. □

This is sufficient to apply a Tauberian theorem to MBk(T, π; s). In order to carry the
dependence on π through this argument, we need more information about the Artin L-
function L(a(T )s, ρa(T )). Luckily, permutation representations are particularly nice.

Lemma 6.5. Let A be a finite set with a (left) G action and C[A] the corresponding G-
module. Then

C[A] =
n⊕
i=1

C[G/Hi]

for Hi the sequence of stabilizers of the G-orbits of A.
In particular, if G = Gk and ρ : Gk → GL(C[A]) is the corresponding permutation

representation, then

L(s, ρ) =
n∏
i=1

ζki(s),

where ki is the field fixed by the stabilizer Hi ≤ Gk.

Proof. Decompose A into a disjoint union of G-orbits O1,...,On. Then

C[A] =
n⊕
i=1

C[Oi].

For each element x ∈ Oi and g ∈ G, we necessarily have that g.x = gh.x for every h ∈
Stab(x). If we fix a base point of each orbit xi, then

C[Oi] = C[G/ Stab(xi)].
We remark that changing the base point of Oi only changes the stabilizer up to conjugation,
and C[G/H] ∼= C[G/Hg] as G-modules.

In particular, for G = Gk this implies

ρ =
n∑
i=1

indGk
Hi
(1Hi

),

where 1Hi
is the trivial representation on Hi so that

L(s, ρ) =
n∏
i=1

L(s, indGk
Hi
(1Hi

)).

Artin L-functions are invariant under under representations, so we have proven that

L(s, ρ) =
n∏
i=1

L(s, 1Hi
) =

n∏
i=1

ζki(s).

□

Finally, we will require an analog to Lemma 6.4(i,ii) for the Dedekind zeta function. It
turns out that knowing an analogous upper bound at s = 1 will suffice, so we prove the
following lemma on the Laurent expansion.
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Lemma 6.6. Let K be a number field of degree n ≥ 2. Let ζK(s) denote its Dedekind zeta
function, and let c−1, c0, . . . be its Laurent series coefficients about s = 1, i.e.

ζK(s) =
c−1

s− 1
+ c0 + c1(s− 1) + . . . .

Then for every r ≥ −1, we have cr = On,r((log | disc(K/Q)|)n+r+2).

Proof. For convenience, set ∆ = max{| disc(K/Q)|, e4}. We recall the convexity bound for
ζK(s) in the following form. Let δ be a real number such that 0 < δ < 1

4
. Then for every s

with real part σ between −δ and 1 + δ, we have∣∣∣∣s− 1

s+ 1
ζK(s)

∣∣∣∣≪n δ
−1∆

1+δ−σ
2 (1 + |t|)n(log∆)n.

(This is standard, but see [LOS24, Lemma 4.1], for example.) On the circle |s− 1| = δ, we
therefore find that

|ζK(s)| ≪n δ
−2∆δ(log∆)n.

By the Cauchy integral formula, we then have

cr =
1

2πi

∮
|s−1|=δ

ζK(s)

(s− 1)r+1
ds≪n δ

−2−r∆δ(log∆)n.

In particular, choosing δ = 1/ log∆, we find that

cr ≪n (log∆)n+r+2.

□

6.3. Proving Theorem 6.1. Lemmas 6.3, 6.4, 6.5, and 6.6 give us enough information to
perform a contour shifting argument that keeps track of the dependence on π.

Proof of Theorem 6.1. Following Lemma 6.3 we have

#{ψ ∈ q−1
∗ (π) : | discG(ψ)| ≤ X} ≪n |H1

ur(k, T (π))|
∑
j≤X

aj,

so it suffices to bound
∑

j≤X aj.
By Perron’s formula we have for c = 1/a(T )∑

j≤X

aj ≤
∞∑
j=1

aje
1− j

X

=
e

2πi

∫ c+ϵ+i∞

c+ϵ−i∞
MBk(T, π; s) · Γ(s) ·Xs ds.

We next shift the contour integral to Re(s) = c − ϵ. Lemma 6.4(i,ii) when d = 0, Lemma
6.5 and the convexity bound for Dedekind zeta functions together imply that on the region
c− ϵ ≤ Re(s) ≤ c+ ϵ

|MBk(T, π; s)| ≪n,[k:Q],ϵ |s− 1/a(T )|−b(k,T (π))|q∗ discG(π)|−c+ϵ(1 + |t|)On(1).

The rapid decay of Γ(s) in vertical strips then implies that

lim
t→∞

e

2πi

∫ c+ϵ±it

c−ϵ±it
MBk(T, π; s) · Γ(s) ·Xs ds = 0.
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Thus, the Cauchy residue theorem implies∑
j≤X

aj ≤ Res(MBk(T, π; s)Γ(s)X
s)s=1/a(T ) +

e

2πi

∫ c−ϵ+i∞

c−ϵ−i∞
MBk(T, π; s) · Γ(s) ·Xs ds.

Once again, the rapid decay of Γ(s) combined with the upper bounds for |MBk(T, π; s)|
imply that the integral is bounded by

e

2πi

∫ c−ϵ+i∞

c−ϵ−i∞
MBk(T, π; s) · Γ(s) ·Xs ds≪n,[k:Q],ϵ |q∗ discG(π)|−1/a(T )+ϵX1/a(T )−ϵ.

It now suffices to bound the residue. We will do this in terms of the factorization given by
Lemma 6.4 and Lemma 6.5

Res(MBk(T, π; s)Γ(s)X
s)s=1/a(T ) = Res

(
Q(T, π; s)

∏
i

ζki(s)G(T, π; s)Γ(s)X
s

)
s=1/a(T )

,

where ki are the fields fixed by the stabilizers of the orbits in Aa(T ) = {t ∈ T : ind(t) = a(T )}.
We now express the residue in terms of Laurent coefficients. Let qr be the Laurent co-

efficients of Q(T, π; s) at s = 1/a(T ), cr,i the Laurent coefficients of ζki(s) at s = 1, gr the
Laurent coefficients of G(T, π, s) and s = 1/a(T ), and γr the Laurent coefficients of Γ(s) at
s = 1/a(T ). Then

Res(MBk(T, π; s)Γ(s)X
s)s=1/a(T ) =

∑
rQ+rG+

∑
i ri+rΓ+rX=−1
rX≥0

qrQ

(∏
i

cri,i
a(T )

)
grGγrΓX

1/a(T )(logX)rX .

Given that Q(T, π; s), G(T, π; s), and Γ(s) are holomorphic at s = 1/a(T ), we may also
restrict this sum to rQ, rG, rΓ ≥ 0. We also know that cr,i = 0 if r < −1, so we can restrict
to ri ≥ −1. The equation rQ + rG +

∑
i ri + rΓ + rX = −1 together with the lower bounds

rQ, rG, rΓ, rX ≥ 0, ri ≥ −1 imply the upper bounds rQ, rG, rΓ, rX , ri ≤ b(k, T (π)) − 1. This
is because the largest possible negative contribution from the left hand side is

∑
i−1 =

−b(k, T (π)).
Bounding above by the largest term times the length of the series, this gives an upper

bound of the form

≤ b(k, T (π))b(k,T (π))+4

a(T )b(k,T (π))
max

0≤rQ,rG,rΓ,rX≤b(k,T (π))−1
−1≤ri≤b(k,T (π))−1

|qrQ|

(∏
i

|cr,i|

)
|grG||γrΓ |X1/a(T )(logX)rX .

Lemma 6.4(i) implies that

qr ≪n,r,[k:Q],ϵ |q∗ discG(π)|−1/a(T )+ϵ,

while Lemma 6.4(ii) implies that
gr ≪n,r,ϵ 1.

Lemma 6.6 states explicitly that

cr,i ≪[ki:Q],r (log | disc(ki/Q)|)[ki:Q]+r+2.

We know that ki is fixed by kerπ, so in particular any prime that ramifies in ki necessarily
ramifies in π, and so divides q∗ discG(π). We also know [ki : Q] ≤ |G|[k : Q] is bounded in
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terms of n (by |G| ≤ n!) and [k : Q]. This implies that, after appropriately adjusting the
value of ϵ,

cr,i ≪n,[k:Q],r,ϵ | disc(ki/Q)|ϵ(n![k:Q]+r+2) ≪n,[k:Q],r,ϵ |q∗ discG(π)|ϵ.
Lastly, γr ≪r 1 because Γ(s) is independent of all other parameters. Putting these all
together gives an upper bound for the residue of the form

≪n,b(k,T (π)),[k:Q],ϵ
b(k, T (π))b(k,T (π))+4

a(T )b(k,T (π))
max

0≤rX≤b(k,T (π))−1
|q∗ discG(π)|−1/a(T )+2ϵX1/a(T )(logX)rX

≪n,a(T ),b(k,T (π)),[k:Q],ϵ |q∗ discG(π)|−1/a(T )+2ϵX1/a(T )(logX)b(k,T (π))−1.

We know that a(T ) ≤ n and b(k, T (π)) ≤ |T | ≤ n! are both bounded in terms of n. Thus,
we have shown

Res(MBk(T, π; s)Γ(s)X
s)s=1/a(T ) ≪n,[k:Q],ϵ |q∗ discG(π)|−1/a(T )+ϵX1/a(T )(logX)b(k,T (π))−1,

the same upper bound as the integral term.
Put together, we have proven that∑

j≤X

aj ≪n,[k:Q],ϵ |q∗ discG(π)|−1/a(T )+ϵX1/a(T )(logX)b(k,T (π))−1.

Multiplying by |H1
ur(k, T (π))| gives the required bound for the fiber, concluding the proof.

□

7. Examples

In this section we give proofs for the examples given in the introduction. This includes a
summary of the results of Theorem 1.2 and the Magma code used to produce them, as well
as proofs for the infinite families of examples following from the statements of Theorem 1.9
and Theorem 1.11.

7.1. Groups of Small Degree. Theorem 1.2 is proven by checking the nilpotent groups
satisfying the conditions in Corollary 1.3.

Authors’ Comment. This section will be expanded prior to posting on the arXiv, detailing
what goes into the Magma code for non-nilpotent groups.

7.2. Groups of degree 6. The first degree that we prove new results for is 6. We describe
the known results for degree 6 in Table 2 to showcase the smallest examples of our methods.
To summarize, we prove Conjecture 1 for four new groups in degree 6 over an arbitrary base
field. Our main results also prove upper bounds, which we optimized for this table. We prove
the weak form of Malle’s conjecture for three additional new groups in degree 6. We do not
prove any lower bounds in this paper, but we include the currently known lower bounds in
the table for the sake of completeness.

The groups labelled as nTd refer to the group TransitiveGroup(n,d) in Magma’s database
of transitive permutation groups. We also include a classical label for each group.

Among the concentrated groups of degree 6, there are now only three groups for which
Conjecture 1 is not yet known.

• The minimal index elements of 6T9 generate a normal subgroup A3 ⋊ S3 ⊴ Hol(S3),
where S3 acts on the alternating group by conjugation.

• The minimal index elements of 6T10 generate the normal subgroup C2
3⋊C2 ⊴ C2

3⋊C4,
where the C2 action on C2

3 is the dihedral action.
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Group Known Known Reference(s)
Asymptotic Bounds

concentrated
6T1 C6 c1X

1/3 [Wri89]
6T3 S3 × C2 c3X

1/2 [MTTW20] over Q
6T4 A4 c4X

1/2 Thm 1.11
6T5 C3 ≀ C2 c5X

1/2 logX Cor 1.5
6T6 C2 ≀ C3 c6X [Klü12]
6T8 S4 c8X

1/2 Thm 1.11
6T9 Hol(S3) ∼= S2

3 X1/2 ≪ N(X) ≪ϵ X
1/2+ϵ [Alb21],Thm 1.11

6T10 (C3)
2 ⋊ C4 X1/2 ≪ N(X) ≪ϵ X

1/2+ϵ [Alb21],Thm 1.11
6T11 C2 ≀ S3 c11X [Klü12]
6T13 S3 ≀ C2 c13X Cor 1.7
6T14 S5 X1/2 ≪ N(X) ≪ X [BSW15]

non-concentrated
6T2 S3 c2X

1/3 [BW07, BF10]
6T7 S4 X1/2 ≪ N(X) ≪ϵ X

1/2+ϵ [Alb21],Thm 1.11
6T12 A5 X

59
1920

−ϵ ≪ϵ N(X) ≪ X [PTBW21, BSW15]
6T15 A6 X

359
7200

−ϵ ≪ϵ N(X) ≪ϵ X
3/2+ϵ [PTBW21, Lem23]

6T16 S6 X7/10 ≪ N(X) ≪ X2 [BSW22, Sch95]
Table 2. Table of Degree 6 Transitive Groups, where N(X) := #F6,k(G;X)

• The minimal index elements of 6T14 generate the alternating group A5 ⊴ S5.

The minimal index elements of these groups are not abelian, and the groups themselves are
not wreath products. Nevertheless, we are able to prove the weak form of Malle’s conjecture
for both 6T9 and 6T10 using Theorem 1.11.

We are also able to prove the weak form of Malle’s conjecture for the non-concentrated
group 6T7. This group is abstractly isomorphic to S4, and our ability to prove such a strong
result is due to known results for the first moment of 2-torsion in the class group of cubic
extensions. This example demonstrates an important idea: while our methods are only able
to give an asymptotic for concentrated groups, the main results of this paper still yield very
good upper bounds for many non-concentrated groups.

We give the proofs of the new results below. For all but 6T8, 6T9, and 6T10, the proof is
either a direct citation of previous references or a direct application of one of the Theorems
or Corollaries in the introduction. The groups 6T9 and 6T10 are the smallest examples in
which we apply our inductive techniques twice to prove the best possible upper bound.

(6T1) C6 is abelian, so Conjecture 1 follows from [Wri89].
(6T2) S3 in degree 6, Conjecture 1 was proven in [BW07, BF10].
(6T3) S3 × C2, Conjecture 1 was proven over Q in [MTTW20].
(6T4) A4 in degree 6, Conjecture 1 will follow from Corollary 1.10. A4 in degree 6 is an

imprimitive group that is realized as a subgroup of C2 ≀ C3. Taking T = C3
2 ∩ A4 =

V4 ⊴ A4, we find that a(T ) = 2. There is only a single nontrivial conjugacy class in
T , so b(K,T (π)) = 1 for any π : GK → A4/T = C3.
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It now suffices to find some θ < 1 = |C2|/a(T ) for which∑
F∈F3,k(C3;X)

|Hom(ClF , C2)| ≪ Xθ.

We can do this by bounding the length of the sum and the summands independently.
We appeal to the bound of 2-torsion in the class group proven in [BST+17] to prove∑

F∈F3,k(C3;X)

|Hom(ClF , C2)| =
∑

F∈F3,k(C3;X)

|ClF [2]|

≪[k:Q],ϵ

∑
F∈F3,k(C3;X)

| disc(F/Q)|
1
2
− 1

2[F :Q]
+ϵ

≪[k:Q],ϵ X
1
2
− 1

6[k:Q]
+ϵ#F3,k(C3;X).

It is known that #F3,k(C3;X) ≪ X1/2+ϵ, so that we can take θ = 1− 1
6[k:Q]

+ ϵ. For
ϵ sufficiently small it follows that θ < 1, so Conjecture 1 follows from Corollary 1.10.

(6T5) C3≀C2 is Klüners’ original counter example to Malle’s Conjecture [Klü05a]. Conjecture
1 is proven directly in Corollary 1.5 and Corollary 1.6, although the power of logX
is not explicitly computed. Theorem 1.11 shows that b = maxπ b(k, C

2
3(π)) where the

maximum is taken over π ∈ Sur(Gk, C2). One can directly calculate that b(k, C2
3(π)) =

1 if k(ζ3) is not fixed by kerπ, and b(k, C2
3(π)) = 2 if k(ζ3) is fixed by π. The

computation is done explicitly in [Alb21] (in the example following Proposition 3.7),
and is essentially the same as the computations done by Klüners in [Klü05a] to show
that Malle’s prediction is incorrect for this group.

(6T6) C2 ≀ C3, Conjecture 1 was first proven in [Klü12]. This is also a subcase of Corollary
1.5.

(6T7) S4 in its first degree 6 representation has a maximal abelian normal subgroup T = V4,
which has a(T ) = 2. The lower bound was proven in [Alb21, Corollary 1.7], and is
conjecturally sharp up to logs.

For the upper bound, we appeal to Corollary 1.10 as S4 in this representation is
realized as a subgroup of C2 ≀ S3 with T = C3

2 ∩G. It now suffices to find some θ for
which ∑

F∈F3,k(S3;X)

|Hom(ClF , C2)| ≪ Xθ.

This will follow from [BSW15, Theorem 2] on the number of S4-extensions with re-
stricted local behavior. Indeed, the sum∑

F∈F3,k(S3;X)

|ClF [2]|

is precisely equal to N4,Σ(k,X), where Σ is the set of local specifications that requires
Lp/kp to have no ramification of type (12)(34). Thus, it follows directly from [BSW15,
Theorem 2] that we may take θ = 1 = |C2|/a(T ).

(6T8) S4 in its second degree 6 representation has a maximal abelian normal subgroup
T = V4, which has a(T ) = 2. There is only a single nontrivial conjugacy class in T , so
b(K,T (π)) = 1 for any π : GK → S4/T = S3. This group is also imprimitive (realized
as a subgroup of S3 ≀C2), however in this case T is not an imprimitive kernel. For this
reason, we need to use the full strength of Theorem 1.11.
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By calculating the indices of elements in Magma, we determine that

ind6((1234)) = 3

ind6((123)) = 4

ind6((12)) = 3

ind6((12)(34)) = 2

Taking the quotient to S4/T = S3, we compute the pushforward indices as in (5.3) to
be

q∗ ind6((12)) = 3

q∗ ind6((123)) = 4.

This agrees with the degree 6 representation for S3, so we conclude that q∗ disc6T8(π) ≍
disc6T2(π). Thus

q∗ Sur(Gk, 6T8;X) ≪ Sur(Gk, 6T2;X) ≪ X1/3.

The bounds for |H1
ur(k, T (π))| are entirely analogous to 6T4, so we compute∑

π∈q∗ Sur(Gk,6T8;X)

|H1
ur(k, T (π))| ≪

∑
π∈q∗ Sur(Gk,6T8;X)

| disc3T2(π)|
1
2
− 1

6[k:Q]
+ϵ

≪
∑

π∈Sur(Gk,6T2;X)

| disc3T2(π)|
1
2
− 1

6[k:Q]
+ϵ

≪
∑

F∈F6,k(6T2;X)

| disc3T2(F Stab3T2(1)/Q)|
1
2
− 1

6[k:Q]
+ϵ

This function is given entirely by the distribution of S3-extensions, using a mix of the
sextic and cubic discriminants. There are likely multiple ways to bound this sum, we
choose to do so by partitioning according to the quadratic resolvent of F . This is
analogous to taking T = C3 ⊴ S3 in Theorem 1.11.

Suppose M ≤ F is the quadratic resolvent. Then comparing indices implies

disc6T2(F/Q) ≍ disc3T2(F
Stab3T2(1)/Q)2 disc(M/Q).

Partitioning by the quadratic resolvant implies∑
F∈F6,k(6T2;X)

| disc3T2(F Stab3T2(1)/Q)|
1
2
− 1

6[k:Q]
+ϵ

≪ X
1
4
− 1

12[k:Q]
+ϵ

∑
F∈F6,k(6T2;X)

| disc(FA3/Q)|−
1
4
+ 1

12[k:Q]
+ϵ.

Let πM : Gk → Gal(M/k) ∼= C2 be the (unique) surjective homomorphism corre-
sponding to a quadratic field M and let q : S3 → S3/A3

∼= C2 be the quotient map.
Partitioning the sum with respect to the fibers of q gives, up to a constant multiple,

X
1
4
− 1

12[k:Q]
+ϵ

∑
M∈F2,k(C2;X1/3)

| disc(M/Q)|−
1
4
+ 1

12[k:Q]
+ϵ#{ψ ∈ q−1

∗ (πM) : | disc6T2(ψ)| ≤ X},
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For each fixed M , we can bound this uniformly in terms of Theorem 6.1 to get

≪ X
1
4
− 1

12[k:Q]
+ϵ

∑
M∈F2,k(C2;X1/3)

| disc(M/Q)|−
1
4
+ 1

12[k:Q]
+ϵ |ClM [3]|
disc(M/Q)3/4−ϵ

X1/4+ϵ,

noting that A3 ⊆ 6T2 has a(A3) = 4 and q∗ disc(π) ≍ disc(M/Q)3. Simplifying, this
is given by

≪ X
1
2
− 1

12[k:Q]
+ϵ

∑
M∈F2,k(C2;X1/3)

| disc(M/Q)|−1+ 1
12[k:Q]

+ϵ|ClM [3]|

≪ X
1
2
− 2

36[k:Q]
+ϵ

∑
M∈F2,k(C2;X1/3)

| disc(M/Q)|−1|ClM [3]|.

Datskovsky–Wright [DW88] proved that the average size of 3-torsion in class groups
over relative quadratic extensions is constant. Thus, Abel summation implies

X
1
2
− 2

36[k:Q]
+ϵ

∑
M∈F2,k(C2;X1/3)

| disc(M/Q)|−1|ClM [3]| ≪ X
1
2
− 2

36[k:Q]
+ϵ logX.

All together, making ϵ slightly larger we conclude that∑
π∈q∗ Sur(Gk,6T8;X)

|H1
ur(k, T (π))| ≪ X

1
2
− 1

18[k:Q]
+ϵ,

so we can take θ = 1
2
− 1

18[k:Q]
+ ϵ. For ϵ sufficiently small, we certainly have θ < 1/2 =

1/a(T ) so that Conjecture 1 follows from Theorem 1.11(i).
(6T9) Consider T = C2

3 ⊴ S2
3 in degree 6. A Magma search indicates that a(T ) = 2, so

that the lower bound is proven by the first author in [Alb21, Corollary 1.7]. This is
conjecturally sharp.

We apply Theorem 1.11 to prove the upper bound, so that it suffices to show∑
π∈q∗ Sur(Gk,6T9;X)

|H1
ur(k, T (π))| ≪ X1/2+ϵ,

as θ = 1/2 + ϵ > 1/2 = 1/a(T ).
By calculating the indices of all elements outside of T , we conclude that q∗ ind6T9(g) ≥

2 = indV4(g) for all g ∈ V4 ∼= S3
3/T . Thus, q∗ disc6T9 ≍ discV4 and we can prove

q∗ Sur(Gk, 6T9;X) ≪ Sur(Gk, V4;X) ≪ X1/2.

We now bound the size of the summands by taking Lemma 4.3 with M the diagonal
subgroup of T . This is a core free subgroup, and is normalized by the H ≤ S2

3 the
pullback of the diagonal in the quotient ∆ ⊆ V4 = S2

3/T . Thus

|H1
ur(k, T (π))| ≪ |H1

ur(F (π)
∆, C3)| disc(F/Q)ϵ

≪ |ClF (π)∆ [3]| disc(F/Q)ϵ,

where F (π) is the field of definition of M (so necessarily a V4-extension). We then
evaluate ∑

π∈q∗ Sur(Gk,6T9;X)

|H1
ur(k, T (π))| ≪

∑
π∈Sur(Gk,V4;X)

|ClF (π)∆ [3]| disc(F/Q)ϵ
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≪ Xϵ
∑

π∈Sur(Gk,V4;X)

|ClF (π)∆ [3]|.

We decompose the sum over V4-extensions by fibering over ∆ ⊴ V4. Let q : V4 → V4/∆
be the quotient map. This implies∑

π∈Sur(Gk,V4;X)

|ClF (π)∆ [3]| =
∑

π∈q∗ Sur(Gk,V4;X)

|ClF (π)[3]|#{ψ ∈ q−1
∗ (π) : | discV4(ψ)| ≤ X},

We directly apply Theorem 6.1 to bound the summands with uniform dependence on
π, proving that∑
π∈Sur(Gk,V4;X)

|ClF (π)∆ [3]| ≪[k:Q],ϵ

∑
π∈q∗ Sur(Gk,V4;X)

|ClF (π)[3]|
|H1

ur(k,∆(π))|
|q∗ disc(π)|1/2−ϵ

X1/2+ϵ.

Now, ∆ ⊴ V4 is a central subgroup, so ∆(π) = ∆ carries the trivial action and the
numerator can be bounded by |Clk[2]| ≪k 1. For the denominator, the fact that all
nonidentity elements of V4 have index 2 implies π∗ disc(π) = disc(π)2. Converting to
a sum over quadratic field via the Galois correspondence, we have shown that up to
a constant multiple∑
π∈q∗ Sur(Gk,6T9;X)

|H1
ur(k, T (π))| ≪ X1/2+ϵ

∑
F∈F2,k(C2;X1/2)

|ClF [3]| · | disc(F/k)|−1+ϵ.

Datskovsky–Wright [DW88] proved that the average 3-torsion of the class groups of
relative quadratic extensions is constant. Abel summation then implies∑

π∈q∗ Sur(Gk,6T9;X)

|H1
ur(k, T (π))| ≪ X1/2+2ϵ.

Replacing ϵ with ϵ/2 concludes the proof.
(6T10) The group 6T10 is C2

3 ⋊ C4 with the faithful action. Take T = C2
3 ⊴ 6T10. A Magma

search indicates that a(T ) = 2, so that the lower bound is proven by the first author
in [Alb21, Corollary 1.7]. This is conjecturally sharp.

We apply Theorem 1.11 to prove the upper bound, so that it suffices to show∑
π∈q∗ Sur(Gk,6T10;X)

|H1
ur(k, T (π))| ≪ X1/2+ϵ,

as θ = 1/2 + ϵ > 1/2 = 1/a(T ).
By calculating the indices of all elements outside of T , we conclude that

q ∗ ind6T10(g) =

{
4 |⟨g⟩| = 4

2 |⟨g⟩| = 2.

As the quotient group C2
3⋊C4/C

2
3 = C4 is abelian (and therefore nilpotent), we use the

upper bounds proven in [Alb20] for nilpotent groups ordered by arbitrary invariants
to conclude

q∗ Sur(Gk, 6T10;X) ≪ X1/2+ϵ.

Next, we apply Lemma 4.3 to bound the summands with core-free subgroup M =
C3 × 1 ≤ T . M is stabilized by H = C2 ≤ C4 under the semidirect product action.
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Thus,

|H1
ur(k, T (π))| ≪ |H1

ur(F (π)
C2 , C3)| · | disc(F (π)/Q)|ϵ

≪ |ClF (π)C2 [3]| · | disc(F (π)/Q)|ϵ

≪ | disc(F (π)C2/Q)|1/2+ϵ| disc(F (π)/Q)|ϵ,

where F (π) is the field fixed by kerπ for π : Gk → C4, and F (π)C2 is the quadratic
subfield. Thus∑
π∈q∗ Sur(Gk,6T10;X)

|H1
ur(k, T (π))| ≪ Xϵ

∑
π∈Surq∗ disc(Gk,C4;X)

| disc(F (π)C2/Q)|1/2+ϵ.

Next, we partition the sum according to the normal subgroup C2 ⊴ C4, similar to
6T9. Let q : C4 → C4/C2 be the quotient map. This gives an upper bound of the
form

≪
∑

π̄∈q̄∗ Surq∗ disc(Gk,C4;X)

| disc(π̄)|1/2+ϵ#{ψ ∈ q−1
∗ (π) : |q∗ disc(ψ)| ≤ X}.

We can directly use Theorem 6.1 to give an upper bound

≪
∑

π̄∈q̄∗ Surq∗ disc(Gk,C4;X)

| disc(π̄)|1/2+ϵ |H1
ur(k, C2(π̄))|

|q̄∗q∗ disc(π̄)|1/2−ϵ
X1/2+ϵ.

The subgroup C2 ⊴ C4 is central, and therefore C2(π̄) = C2 carries the trivial action.
Thus, the numerator is bounded above by |Clk[2]| ≪k 1. The group C2 has only one
nontrivial element, so by checking the weight of that element we find that

q̄∗q∗ disc6T10(π) ≍ discC2(π̄)
4.

Thus, we can finally bound the sum by∑
π∈q∗ Sur(Gk,6T10;X)

|H1
ur(k, T (π))| ≪ X1/2+ϵ

∑
π̄∈Sur(Gk,C2;X1/4)

| disc(π̄)|−3/2+ϵ.

Via the Galois correspondence and Abel summation, we conclude that∑
π∈q∗ Sur(Gk,6T10;X)

|H1
ur(k, T (π))| ≪ X1/2+ϵ

∑
F∈F2,k(C2;X1/4)

| disc(F/k)|−3/2+ϵ

≪ X1/2+ϵ.

(6T11) C2 ≀ S3, Conjecture 1 was first proven in [Klü12]. This is also a subcase of Corollary
1.4.

(6T12) For A5 in degree 6, we check the indices in Magma to prove that

disc5T4 ≪ disc6T12 ≪ disc25T4,

where 5T4 is the group A5 in the degree 5 representation. Thus,

#F5,k(A5;X
1/2) ≪ #F6,k(6T12;X) ≪ #F5,k(A5;X).

The lower bound is then given by [PTBW21] and the upper bound by [BSW15].
(6T13) S3 ≀ C2 is proven directly by Corollary 1.7.
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(6T14) For S5 in degree 6, we check the indices in Magma to prove that

disc5T5 ≪ disc6T14 ≪ disc25T5,

where 5T5 is the group S5 in the degree 5 representation. Thus,

#F5,k(S5;X
1/2) ≪ #F6,k(6T14;X) ≪ #F5,k(S5;X).

The asymptotic for #F5,k(S5;X) ≍ X is given by [BSW15].
(6T15) For A6 in degree 6 [PTBW21] prove the best known lower bound while Lemke Oliver

gives the best known upper bound [Lem23].
(6T16) For S6 in degree 6 [BSW22] proves the best known lower bound while Schmidt’s trivial

bound [Sch95] is the best known upper bound.

7.3. Nilpotent Groups. A Magma search reveals numerous new groups for which Corollary
1.3 proves Conjecture 1. In particular, all 2,685,340 groups in degree 32 in Theorem 1.2 for
which we prove Conjecture 1 are nilpotent.

In the introduction, we referred to Hol(D4) = D4 ⋊ Aut(D4) in degree 8 as one such new
example, which we elaborate on before proving Corollary 1.3. Theorem 1.11 implies the
asymptotic

#F8,k(Hol(D4);X) ∼ c(k,Hol(D4))X
1/2 logX

for some positive constant c(k,Hol(D4)) > 0. This follows from a Magma search through
the elements of Hol(D4), expressed as TransitiveGroup(8,26). This search confirms that
a(Hol(D4)) = 2, that there are two conjugacy classes of minimum index elements, and that

T := ⟨g ∈ Hol(D4) : ind(g) = 2⟩ ∼= C3
2

is abelian. Given that the cyclotomic character acts trivially on group elements of order 2, it
follows that the power of logX given by Theorem 1.11 agrees with Malle’s original prediction

max
π

b(k, T (π)) = b(k,Hol(D4)) = 2.

We now prove Corollary 1.3 via Theorem 1.11.

Proof of Corollary 1.3. IfG is a nilpotent group whose minimal elements all commute, choose

T = ⟨g ∈ G− {1} : ind(g) = a(G)⟩.

This is a normal subgroup of G, as the index function is constant on conjugacy classes. It is
abelian by assumption, so we can apply Theorem 1.11.

Alberts proves in [Alb20] a generalized version of Malle’s predicted weak upper bound for
nilpotent groups to arbitrary admissible invariant, including the pushforward discriminant.
It follows from [KW22, Theorem 1.6] or [Alb20, Corollary 5.2] that G nilpotent implies

#q∗ Sur(Gk, G;X) ≤ #Surq∗ discG(Gk, G/T ;X) ≪ϵ X
1/a(G−T )+ϵ.

Given that G is nilpotent, it follows that T (π) is a nilpotent module for any π : GK → G.
The inductive class group bounds in Corollary 1.13(i) then imply∑

π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪ϵ

∑
π∈q∗ Sur(Gk,G;X)

| disc(F (π)/Q)|ϵ
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for F (π) the field fixed by π−1(StabG(1)T ). As we have the freedom to choose ϵ as small
as we like and pmi disc(F (π)/Q) if and only if p | q∗ disc(π), it follows that there exists an
ϵ′ > 0 for which we can bound

| disc(F (π)/Q)|ϵ′ ≪ϵ |q∗ disc(π)|ϵ.

Thus, we conclude that∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪ϵ

∑
π∈q∗ Sur(Gk,G;X)

|q∗ discG(π)|ϵ ≪ϵ X
1/a(G−T )+ϵ

so that we can take θ = 1/a(G− T ) + ϵ in Theorem 1.11.
It is clear that θ < 1/a(G) by our choice of T , so Theorem 1.11(i) implies Corollary

1.3. □

7.4. Wreath Products. We present a proof of Corollary 1.4 in this section. Our methods
give us access to wreath products by abelian groups of slightly larger rank as well. We give
a complete statement below:

Corollary 7.1. Let G = A≀B ⊆ Snm be a wreath product of an abelian group A of cardinality
n with a transitive subgroup B of degree m.

Suppose k is a number field which has at least one B-extension and for which there exists
a δ > 0 such that

#Fm,k(B;X) ≪k X
1+ 1

ℓ−1
− d(A)

2
−δ,

where ℓ is the smallest prime dividing n and d(A) the minimum number of generators of A
as an abstract group. Then Conjecture 1 holds for G over k.

It is clear that Corollary 1.4 is an immediate consequence by d(Cn) = 1. Moreover, as
long as d(A) < 2 + 2

ℓ−1
we can give further examples by taking B to be nilpotent with a(B)

sufficiently large.

Proof. This will follow directly from Corollary 1.10, as A ≀B is an imprimitive group.
Using Minkowski’s bound on the size of the class group we find that∑

F∈Fm,k(B;X)

|Hom(ClF , A)| ≪k,ϵ

∑
F∈Fm,k(B;X)

| disc(F/k)|d(A)/2+ϵ

≪k,ϵ X
d(A)/2+ϵ#Fm,k(B;X).

By assumption, it follows that∑
F∈Fm,k(B;X)

|Hom(ClF , A)| ≪k,ϵ X
1+ 1

ℓ−1
−δ

for some δ > 0 (where we choose ϵ sufficiently small to get cancelled out). Thus, we can take
θ = 1 + 1

ℓ−1
− δ.

The mimimum index elements of Am are precisely the conjugates of (a1, 1, 1, ..., 1) with
a1 ∈ A a mimimum index element. Thus,

|A|
a(Am)

=
|A|
a(A)

=
|A|

|A| ℓ−1
ℓ

=
ℓ

ℓ− 1
= 1 +

1

ℓ− 1
.

We have now shown that θ < |A|/a(Am), so the result follows from Corollary 1.10(i). □
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7.5. Iterated Wreath Products of Cyclic Groups. We address Corollary 1.5 separately,
as this example showcases the inductive power of our methods. We first prove the following
upper bound results for iterated wreath products, which we will use as input in Corollary
1.10.

Corollary 7.2. Let k be a number field and G = Cn1 ≀ Cn2 ≀ · · · ≀ Cnr . Then

#Sur(Gk, G;X) ≪

{
X

3
2n1

+ϵ
2 ∤ n1

X
2
n1 2 | n1.

Proof. We prove this by inducting on k. If k = 1, these groups are abelian and the result
follows from [Wri89]. For k > 1, write G = Cn1 ≀H where H is an iterated wreath product
of cyclic groups of length k − 1. For the sake of convenience, we can weaken the inductive
hypothesis to

#Fn2···nk,k(H;X) ≪ X.

G is certainly an imprimitive group, so we apply Corollary 1.10. Minkowski’s bound and
the inductive hypothesis imply that∑

F∈Fn2···nk,k(H;X)

|Hom(ClF , Cn1)| ≪ X1/2#Fn2···nk,k(H;X) ≪ X3/2,

We will compare this to
n1

a(Cn1)
=

ℓ

ℓ− 1

for ℓ the smallest prime dividing n1.
If n1 is odd, then θ = 3/2 ≥ ℓ

ℓ−1
= n1

a(Cn1 )
. Thus, Corollary 1.10(ii) implies

#Fn1···nk,k(G;X) ≪ X
θ
n1

+ϵ
= X

3
2n1

+ϵ
.

Meanwhile if n1 is even, then θ = 3/2 < 2 = n1

a(Cn1 )
. Thus, Corollary 1.10(i) implies

#Fn1···nk,k(G;X) ≪ X
1

a(Cn1 )
+ϵ

= X
2
n1

+ϵ
.

□

We can now prove the shortest cases of Corollary 1.5 as a consequence of Corollary 1.4.

Proof of Corollary 1.5(a,b). Suppose first that n2 > 2. If n2 > 2 is even then certainly
2/n2 < 1/2, while if n2 > 2 is odd 3/2n2 < 1/2. The result then follows from Corollary 1.4,
as Corollary 7.2 implies

#Fn2...nr,k(B;X) ≪ X1/2 ≤ X
1
2
+ 1

ℓ−1
−δ

for ℓ the smallest prime dividing n1. In fact, the same argument applies if n1 = n2 = 2 as
part of (c).

If n1, n2, ..., nr are all powers of 2, then G is a 2-group (and therefore nilpotent) with
minimum index elements landing in Cn2···nr

n1
and the result follows from Corollary 1.3. □

The remaining cases of Corollary 1.5 with n2 = 2 require a closer study of |H1
ur(k, T (π))|,

which we give in the following lemma:



48 B. ALBERTS, R.J. LEMKE OLIVER, J. WANG, AND M.M. WOOD

Lemma 7.3. Let F/k be a G = C2 ≀B-extension in degree 2m. Then

|H1
ur(k, Ind

k
F (Cn))| ≪|G|,ϵ |ClE[2ν2(n)]| · |ClE[2]|ν2(n) · |ClF [nodd]| · | disc(F/Q)|ϵ,

where ν2(n) is the order to which 2 divides n, E is the index two subfield of F/k fixed by the
normal subgroup Cm

2 ⊴ C2 ≀B, and nodd is the odd part of n.

Proof. Induced modules and cohomology groups respect direct sum decompositions, so we
can write

H1
ur(k, Ind

k
F (Cn)) = H1

ur(k, Ind
k
F (C2ν2(n)))⊕H1

ur(k, Ind
k
F (Cnodd

)).

We will bound the two factors separately. Lemma 4.2 implies

|H1
ur(k, Ind

k
F (Cnodd

))| = |Hom(ClF , Cnodd
)| = |ClF [nodd]|.

For the even factor, we need to further decompose the module. Taking E to be the index 2
subfield of F/k, we have

IndkF (C2ν2(n)) = IndEF (Ind
k
E(C2ν2(n)))).

Lemma 4.2 gives that

|H1
ur(k, Ind

k
F (C2ν2(n)))| = |H1

ur(E, Ind
E
F (C2ν2(n)))|.

There is an isomorphism of abstract groups IndEF (C2ν2(n)) ∼= C2ν2(n) × C2ν2(n) , where GE acts
by permuting the coordinates. The diagonal subgroup is then a submodule with the trivial
action. Taking M to be this diagonal in Lemma 4.3 implies

|H1
ur(E, Ind

E
F (C2ν2(n)))| ≪|G|,ϵ |H1

ur(E,C2d2 )| · |H1
ur(E,C2d2 (−1))| · | disc(F/Q)|ϵ

≪|G|,ϵ |ClE[2ν2(n)]| · |H1
ur(E,C2d2 (−1))| · | disc(F/Q)|ϵ,

where Gal(F/E) acts on C2ν2(n)(−1) via the dihedral action σ.a = a−1. This group has a
central subgroup isomorphic to C2, with quotient C2ν2(n)−1(−1). Iterating Lemma 4.3 with
M being this central subgroup implies

|H1
ur(k, Ind

k
F (C2d2 ))| ≪|G|,ϵ |ClE[2ν2(n)]| · |H1

ur(E,C2)|ν2(n) · | disc(F/Q)|ϵ

≪|G|,ϵ |ClE[2ν2(n)]| · |ClE[2]|ν2(n) · | disc(F/Q)|ϵ.
This concludes the proof. □

We can now prove the remaining cases of Corollary 1.5.

Proof of Corollary 1.5(c,d). We take n2 = 2, and write n1 = 2d23d3 . We will prove the result
using Theorem 1.11. Take T = Cn2···nr

n1
as a normal subgroup in G and take B = Cn3 ≀ · · · ≀Cnr

so that G/T = C2 ≀ B. (If r = 2, then we take B = 1). We know that the wreath action
realizes T as the induced module IndC2≀B

1 (T ). Thus, for any π ∈ Sur(Gk, C2 ≀B)

T (π) = IndkF (π)(Cn1),

where F (π)/k is the extension fixed by π−1(StabC2≀B(1)) and GF (π) acts trivially on T . Thus,
we are interested in bounding∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪n1,ϵ

∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, Ind

k
F (π)(Cn1))| · | disc(F (π)/Q)|ϵ.

By Proposition 5.2,
q∗ Sur(Gk, G;X) ⊆ Sur(Gk, C2 ≀B, cX1/n1)
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for some constant c depending only on [k : Q] and n1. Up to a constant multiple, we have
bounded ∑

π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪n1,ϵ

∑
F∈F2n3···nr,k(C2≀B;cX1/n1 )

|H1
ur(k, Ind

k
F (Cn1))|Xϵ.

We now partition this sum according to the index 2-subfield E fixed by Cn3···nr
2 , yielding

≪n1,ϵ

∑
E∈Fn3···nr,k(B;cX1/2n1 )

∑
F∈F2,E(C2;c1/2X1/n1/| disc(E/Q)|2)

|H1
ur(k, Ind

k
F (Cn1))|Xϵ.

We can bound this above using Lemma 7.3.

≪|G|,ϵ
∑

E∈Fn3···nr,k(B;cX1/2n1 )

∑
F∈F2,E(C2;c1/2X1/n1/| disc(E/Q)|2)

|ClE[2d2 ]| · |ClE[2]|d2 · |ClF [3d3 ]| ·Xϵ.

If d3 = 0, we can bound the sum over F directly by

#F2,E(C2;Y ) ≪k,[E:k],ϵ | disc(E/Q)|ϵ · |ClE[2]| · Y.

This follows, for example, from Theorem 6.1 for C2 with the trivial action. If d3 = 1, then
we can bound the sum over F using [LOWW21, Corollary 3.2] as∑

F∈F2,E(C2;Y )

|ClF [3]| ≪[E:Q],ϵ | disc(E/Q)|1+ϵ · |ClE[2]|2/3 · Y.

These produce the upper bound

≪|G|,[k:Q],ϵ

∑
E∈Fn3···nr,k(B;cX1/2n1 )

|ClE[2d2 ]| · |ClE[2]|d2+1−d3/3 · | disc(E/Q)|d3−2+ϵ ·X1/n1+ϵ

for d3 ∈ {0, 1}. Minkowski’s bound on the size of the class group gives an upper bound of
the form

≪|G|,[k:Q],ϵ

∑
E∈Fn3···nr,k(B;cX1/2n1 )

| disc(E/Q)|
1
2
d2+

5
6
d3−1+ϵ ·X1/n1+ϵ.

Corollary 7.2 and Abel summation then produce the upper bound Xmax{θ,1/n1} for

θ =
1

n1n3

+
d2
4n1

+
5d3
12n1

− 1

2n1

+
1

n1

+ ϵ.

(Unless r = 2 so that B = 1, then θ = 0 and we are done.) Noting that 1/n1 < 1/a(T ) =
1/a(Cn1), it suffices to determine when θ < 1/a(T ). If d2 = 0 and d3 = 1 (so n1 = 3), then
we get θ = 1/n3−1/36 < 1/2 = 1/a(T ), as a(T ) = a(C3) in this case and n3 ≥ 2. Otherwise,
d2 > 0 and 1/a(T ) = 2/n1. It follows that θ < 2/n1 if and only if

d2 < 6− 5d3
3

+
4

n3

.

The result then follows by plugging in each of d3 = 0 and d3 = 1.
□
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7.6. Wreath products by S3 in the wreath representation. Corollary 1.7 follows di-
rectly from Theorem 1.9.

Indeed, using the assumption #Fm,k(B;X) ≪ X
5
3
+ 1

3r[K:Q]
−δ for some δ > 0, we can bound

the class group using the 2-torsion bounds of [BST+20]∑
F∈Fm,k(B;X)

|ClF [2]|2/3 ≪
∑

F∈Fm,k(B;X)

| disc(F/Q)|
1
3
− 1

3m[K:Q]
+ϵ

≪ X
1
3
− 1

3m[K:Q]
+ϵ#Fm,k(B;X)

≪ X2+ϵ−δ.

Taking ϵ < δ, we can choose θ = 2 + ϵ− δ < 2. Corollary 1.7(i) then follows from Theorem
1.9(i).

For Corollary 1.7(ii), suppose that B is primitive and that there exists some constant β
so that

#Fm,k(B;X) ≪m,k X
β.

From [LOS24, Corollary 7.4], it follows that∑
F∈Fm,k(B;X)

|ClF [2]| ≪m,k,ϵ X
1
2
+β·(1− 1

2m−1)+ϵ.

Hence, on using Hölder’s inequality, we find

∑
F∈Fm,k(B;X)

|ClF [2]|2/3 ≤

 ∑
F∈Fm,k(B;X)

|ClF [2]|

2/3 ∑
F∈Fm,k(B;X)

1

1/3

≪m,k,ϵ X
1
3
+β· 6m−5

6m−3
+ϵ.

It follows that if there is some δ > 0 so that β = 5
3
+ 10

18m−15
− δ, then the exponent above is

strictly less than 2, and the result follows from Theorem 1.9(i).

7.7. Trace 0 Semidirect Products. We now prove Corollary 1.8 from Corollary 1.10.
Given G = W ⋊B for W ≤ Fmp the trace zero subspace and B a transitive group of degree

m is given as an explicit subgroup of the wreath product Cp ≀ B. Moreover, the degree pm
representation realizes G as a permutation subgroup of Cp ≀B, and so G is imprimitive and
we can apply Corollary 1.10 with A = Cp. We then bound∑

F∈Fm,k(B;X)

|Hom(ClF , Cp)| ≪k,ϵ

∑
F∈Fm,k(B;X)

| disc(F/k)|1/2+ϵ

≪k,ϵ X
1/2+ϵ#Fm,k(B;X).

By assumption, we have bounded∑
F∈Fm,k(B;X)

|Hom(ClF , Cp)| ≪k,ϵ X
1
2
+ 1

2(p−1)
−δ

for some δ > 0. Meanwhile, the minimum index elements of W are permutations of
(a, a−1, 1, 1, ...), which have index 2(p− 1). Thus,

|Cp|
a(G ∩ Cm

p )
=

p

a(W )
=

p

2(p− 1)
=

1

2
+

1

2(p− 1)
.
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Thus, θ < |Cp|/a(G ∩ Cm
p ) so the result follows from Corollary 1.10(i).

8. Further Applications to Concentrated Groups

We use the discussion in this section to frames our method as a general approach to
Conjecture 1 for any concentrated group.

The compounding phenomenon of these methods can make it difficult to see from the
statements of the main theorems exactly which groups are actually covered by our main
results. Our main results are explicitly apply to groups in the following families:

• if G = S3 ≀B for some transitive group B, then Theorem 1.9 may be applicable.
• if G is concentrated in an abelian normal subgroup, i.e. all the elements of minimal

index commute with each other, then Theorem 1.11 may be applicable.

These are purely group theoretic conditions which, in particular, imply thatG is concentrated
and indicate when we might expect our methods to apply in the future.

Data Analysis 8.1. Among the 40238 transitive groups of degree ≤ 31,

(i) 39770 are concentrated,
(ii) 166 are of the form S3 ≀B, and
(iii) 30691 are concentrated in an abelian normal subgroup.

On the one hand, existing conjectures suggest that improved bounds for the (average) size
of class group torsion and the number of G/T -extension should exist which we can use as
input for Theorem 1.9 and Theorem 1.11. The ℓ-torsion conjecture predicts that |ClF [ℓ]| ≪ϵ

| disc(F/Q)|ϵ as F varies over any family of number fields F with bounded degree (this is
generally regarded as a folklore conjecture, see [PTBW21] by Pierce, Turnage–Butterbaugh,
and Wood for a good introduction). Meanwhile, we already discussed Conjecture 3 for
an upper bound on the number of G/T -extensions order by the pushforward discriminant
following from the discussion in [EV05, Question 4.3].

In the context of Theorem 1.9 these conjectures would imply that∑
F∈Fm,k(B;X)

|ClF [2]|2/3 ≪m,k X
1/a(B)+ϵ,

so that we can take θ = 1/a(B). By definition 1/a(B) ≤ 1 < 2, so Conjecture 1 would
follow.

Similarly, in the context of Theorem 1.11, these conjectures would imply that∑
π∈q∗ Sur(Gk,G;X)

|H1
ur(k, T (π))| ≪ϵ X

1/a(G−T )+ϵ,

so that we can take θ = 1/a(G−T ). If G is concentrated in T , then θ < 1/a(G) by definition
an Conjecture 1 would follow.

On the one hand we argue that our method is, in principle, applicable to any concentrated
group. Theorem 1.11 can be extended to allow T to be nonabelian as long as Conjecture 2
is known for such T with sufficient uniformity. This gives a roadmap for proving Conjecture
1 for any concentrated group, through proving new cases for Conjecture 2.
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9. A Cute Extension

As a demonstration of the general nature of our methods, we prove the following cute
result:

Theorem 9.1. Let G be a group with a nontrivial abelian normal subgroup and k a number
field which has at least one G-extension. Then there exists an admissible ordering of G-
extensions, inv, for which there are positive constants b, c > 0 such that

#Surinv(Gk, G;X) ∼ cX(logX)b−1.

In particular, this includes all solvable groups, and many more groups besides! This is a
cute application of our methods. While it showcases the general framework to which our
methods apply, the admissible invariant needed for this specific result is often very far from
a discriminant ordering.

Proof. Let T ⊴ G be a nontrivial abelian normal subgroup. Take the admissible invariant
determined by the weight function

wt(g) =

{
1 g ∈ T − {1}
ind|G|(g) g ̸∈ T,

where ind|G| is the index function for G in the regular representation, that is

inv(π) =
∏
p

pwt(π(τp)

for τp a generator of tame inertia.
We follow along the proof of Theorem 1.11. Alberts–O’Dorney work at the level of a

general admissible invariant in [AO21], and it follows directly from their work that

#{ψ ∈ q−1
∗ (π) : |inv(ψ)| ≤ X} ∼ cX(logX)b(π)−1

for some positive constants b(π), c > 0, where π ∈ q∗ Sur(Gk, G/T ) and π̃ ∈ q−1
∗ (π). In

particular, b(π) ≤ |T | is necessarily bounded. This verifies Theorem 2.1(1), where we set
a = 1, b = maxπ b(π), and c(π) is the c above if b(π) = b and c(π) = 0 otherwise.

Next, we prove a uniform upper bound for these fibers analogous to Theorem 6.1. The
start of the proof is the same: we bound

#{ψ ∈ q−1
∗ (π) : |inv(ψ)| ≤ X} ≪|T | |H1

ur(k, T (π))|
∑
j≤X

aj

by the same argument as the one proving Lemma 6.3, where aj are the Dirichlet coefficients
of

MBk,inv(T, π; s) =
∏
p

 1

|T |
∑

ψp∈q−1
∗ (π|Gkp

)

|inv(ψp)|−s

 .

The analog of Lemma 6.4 shows that

MBk,inv(T, π; s) = Qinv(T, π, s)L(s, ρT )Ginv(T, π; s),

where Qinv(T, π; s) and Ginv(T, π; s) obey the same bounds as the ones listed in Lemma 6.4
with discG replaced by inv, ind with wt, and a(T ) replaced by 1 everywhere they appear.
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Finally, we use the same smoothed Perron formula and shifted contour argument to bound

∑
j≤X

aj(0) ≤
∞∑
j=1

aj(0)e
1− j

X

=
e

2πi

∫ 1+ϵ−i∞

1+ϵ−i∞
ŵ(0)Γ(s)Xsds

= Res
s=1

(ŵ(0)Γ(s)Xs) +On,[k:Q],ϵ

(
|q∗inv(π)|−1+ϵX1−ϵ)

= On,[k:Q],ϵ

(
|q∗inv(π)|−1+ϵX1−ϵ) .

Thus, we have shown that

{ψ ∈ q−1
∗ (π) : |inv(ψ)| ≤ X} ≪|T |,[k:Q],ϵ

|H1
ur(k, T (π))|

|q∗inv(π)|1−ϵ
X(logX)b(π)−1.

This gives Theorem 2.1(2).
We remark that q∗inv ≍ (discG/T )

|T | with G/T being viewed in the regular representation.
Theorem 2.1(3) now follows, as the uniform coefficients satisfy∑

π∈q∗ Surinv(Gk,G;X)

|H1
ur(k, T (π))|

|q∗inv(π)|1−ϵ
≪

∑
F∈F|G/T |,k(G/T ;X

1
|T | )

| disc(F/Q)|d(T̂ )/2−|T |+ϵ

following from the upper bound proven in Lemma 4.1. By Abel summation, this is further
bounded by∑
π∈q∗ Surinv(Gk,G;X)

|H1
ur(k, T (π))|

|q∗inv(π)|1−ϵ
≪X

d(T̂ )
2|T | −1+ϵ#F|G/T |,k(G/T ;X

1
|T | )

+

(
|T | − d(T̂ )

2

)∫ X1/|T |

1

td(T̂ )/2−|T |−1+ϵ#F|G/T |,k(G/T, t)dt

≪X
d(T̂ )
2|T | +

1
|T |−1+ϵ +O(1),

where d(T̂ ) is the number of generators for T̂ and the last line follows from #F|G/T |,k(G/T ;X) ≪
X, following from the bounds for Galois extensions in [EV06, Proposition 1.3].

The fact that d(T̂ ) ≤ |T | − 1 implies

d(T )

2|T |
+

1

|T |
− 1 + ϵ < −1

2
+ ϵ < 0.

Thus, we have shown that the sum∑
π∈q∗ Surinv(Gk,G)

|H1
ur(k, T (π))|

|q∗inv(π)|1−ϵ
= O(1)

is convergent, so the result follows from the conclusion to Theorem 2.1. □
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