Quiz 4

Math 234

Notice:

Name:

1. Please box your final answer.

2. Please stop writing when time is up.

Problem 1 (10 points):

Given the following surface:

$$x^2 + 2y^2 + z^2 = 4$$

1. What is the tangent plane at (1,1,1)?

2. And what is the normal vector of this plane?

1. The surface is the level set of
$$f(x, y, z) = x^2 + 2y^{\frac{1}{2}} z^{\frac{1}{2}} / \text{ at } 0$$
.
So. $\nabla f = \begin{pmatrix} 2x \\ 4y \\ 2z \end{pmatrix}$ $\nabla f |_{(1,1,1)} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ is the normal vector.
The tangent plane is $\begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} = 0$ i.e. $x + 2y + 2 = 34$

Problem 2 (10 points):

Consider the level sets of the function

$$f(x,y) = x^2 + 4y^2$$

at level 4,

1. Find the points on the level set where the gradient is parallel to the vector $\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

2. At each point you find out in part 1, in which direction f increases fastest? in which direction f decreases the fastest? in which direction the function remains the same?

1.
$$\nabla f = \begin{pmatrix} 2x \\ 8y \end{pmatrix}$$
 $\nabla f = k \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} x = \frac{R}{2} \\ y = \frac{R}{8} \end{cases}$

$$(\frac{k}{2})^2 + 4 \cdot (\frac{k}{8})^2 = 4 \Rightarrow K = \pm \frac{8}{\sqrt{5}}$$
So there in 2 points: $P: (\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}})$ and $P_2: (-\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$ corresponding to $k = \frac{8}{\sqrt{5}}$ and $k_2 = -\frac{8}{\sqrt{5}}$

2. At P_1 , $k_1 = \frac{8}{\sqrt{5}}$ $\nabla f = \frac{8}{\sqrt{5}} \cdot \binom{1}{1}$ in ∇f direction f increases that fastest.

The start of the fastest.

the direction perpenticular to ∇f is $\frac{8}{\sqrt{5}} \cdot \binom{-1}{1}$ or $\frac{8}{\sqrt{5}} \cdot \binom{-1}{1}$ For P_2 : $k_2 = -\frac{8}{\sqrt{5}}$, in $\nabla f = -\frac{8}{\sqrt{5}} \binom{7}{1}$ direction, f increases fastest. in - $\nabla f = \frac{8}{15} \binom{1}{1}$ direction of decreases fastest. in direction perpenticular to ∇f , i.e. $\frac{8}{\sqrt{5}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ or 8.(1), fremains the same.

.