MATH 234

Name:

Notice:

- 1. Please box your final answer.
- 2. Please stop writing when time is up.

Problem 1 (10 points):

Given the following function:

$$f(x,y) = y^2 - 18x^2 + x^4$$

- 1. Compute critical point(s);
- 2. Determine for each critical point, what is the local behavior.

1.
$$f_{x} = -36x + 4x^{3} = 0$$
 $y = 0$ $CP: (0,0) (3,0) (-3,0)$
 $f_{y} = 2y = 0$ $x = 0$ or ± 3

2. $f_{xx} = -36 + 12x^{2}$ $f_{xy} = 0$ at $(0,\pm 3)$
 $f_{y} = 2$
 $f_{y} = 2$
 $f_{y} = 2$
 $f_{x} = -36x + 4x^{3} = 0$
 $f_{x} = -36 + 12x^{2}$ $f_{xy} = 0$

Problem 2 (10 points):

Given the following functions:

$$f(x,y) = x^2 - y^4$$
; $g(x,y) = x^2 + y^4$

- 1. For f, compute critical points and find the associated quadratic form;
- 2. For g, compute critical points and find the associated quadratic form;
- 3. Is the second order derivative test conclusive or not? If not, what is the local behavior at these critical points? $2. f_x = 2x f_y = 4y^3$

Hint: you might want to draw zero set.

Hint: you might want to draw zero set.

1.
$$f_{x} = 2x$$
 $f_{y} = -4y^{3}$

$$= > c.p. (0.0)$$

$$f_{xx} = 2$$
 $f_{yy} = -12y^{2}$ $f_{xy} = 0$

$$Q(X, Y) = 2X^{2}$$

$$= > c.p. (0.0)$$

$$f_{xy} = 2$$

$$Q(X, Y) = 2X^{2}$$

$$Q(X, Y) = 2X^{2}$$

3. No. For f:

For g: x+y+>0 if (x,y)is
not oxigin.