Recall line integral of vector fields to b

$$\int_{C} \vec{F} d\vec{r} = \int_{T=0}^{T=0} \vec{F} \cdot \vec{r}'(t) dt \qquad fields \qquad to a$$
Goal: introduce conservative vector fields.
Def: \vec{F} is conservative in a regim R of $\vec{F} = \nabla f$.
by fundmental theorem of the integral. (recall supple $\int_{C} (\nabla f) \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) \int_{A} f'(x) dx = f(b) - f(a)$)
this implies that $\int_{C} (\nabla f) \cdot d\vec{r}$ only defined on each is
 0 does not depend on the path. $0 \ll 2$
 $\vec{r}_{1}(t) = \vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r}$
equivalently, \vec{r}_{1} are consider the boop, then
 $\int_{T} \vec{F} \cdot d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} = \int_{T} \vec{F} \cdot d\vec{r} = 0$
 $\vec{r}_{2} d\vec{r} - \int_{T} \vec{r} d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{1} d\vec{r} - \int_{T} \vec{r} d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{2} d\vec{r} - \int_{T} \vec{r} d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{2} d\vec{r} - \int_{T} \vec{r} d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{2} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{2} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = \vec{r} \cdot d\vec{r} = 0$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = 1$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot d\vec{r} = 1$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot \vec{r} \cdot d\vec{r} = 1$
 $\vec{r}_{3} d\vec{r} - \vec{r} \cdot \vec$

Then. Suppose
$$\overline{F} = \begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix} \begin{pmatrix} P \\ R \end{pmatrix} Both P and Q and their
1. St order partial derivatives are continuous. Circa a
region R that is a sector fee (R has no), then
holds $P_{q} = Q_{x}$ in R. Circa $P_{q} = Q_{x}$ in R. $\begin{pmatrix} P_{a} & Q_{y} \\ P_{a} - R_{y} \end{pmatrix}$
 \overline{F} is conservative in R $\leq P_{q} = Q_{x}$ in R. $\begin{pmatrix} P_{a} & Q_{y} \\ P_{a} - R_{y} \end{pmatrix}$
 $R = R^{2}$
 $R =$$$

Green's Thm.



