Surface Integral.
Line Integral $\vec{\gamma}(t)$
$\vec{x}(u, v)$

- of functions
- of functions

$$
\iint_{D} f(u, v) \cdot d A=\iint_{D} f(u, v) \underline{\underline{\| \vec{x}_{u}} \times \vec{x}_{v} \| d u d v}
$$

$$
\int f(t) \cdot d s=\int f(t) \underline{\underline{|r|}(t) \| d t}
$$

(model: compute mass of curve)
if $f=1$ center of mass
if $f=1$

$$
\iint_{D} 1 \cdot\left\|\vec{x}_{u} \times \vec{x}_{v}\right\| d u d v=\text { surface area }
$$

$\int\left\|\vec{r}^{\prime}(t)\right\| d t=$ arc lagth.
(model: mass of surface, center of mess)

- of vector fields
- of wetor fields

$$
\begin{aligned}
& \text { II flux) } \begin{aligned}
\iint_{D} \vec{v} \cdot \vec{N}^{\text {mit rumal }} d A & =\iint_{D} \vec{v} \cdot \underbrace{\vec{N} \cdot\left\|\vec{x}_{u} \times \vec{x}_{v}\right\|}_{\|} \| d u d v \\
& =\iint_{D} \vec{v} \cdot\left(\vec{x}_{u} \times \vec{x}_{v}\right) d u d v
\end{aligned} .
\end{aligned}
$$

 (Later Story: Green's)

$$
\begin{aligned}
\int \vec{F} \cdot \vec{r}^{\prime}(t) d t & =\int_{\text {mit }} \overrightarrow{F e} \cdot \vec{T} \cdot \| \underbrace{\|\vec{r}(t)\| d t} \\
& =\int \vec{F} \cdot \overrightarrow{\vec{T}} \cdot d s
\end{aligned}
$$

Example: sphere.

$$
\text { with radius } R . \quad \vec{x}(\phi, \theta)=\left(\begin{array}{c}
R \sin \phi \cos \theta \\
R \sin \phi \sin \theta \\
R \cos \phi
\end{array}\right)
$$

$$
\vec{x}(\phi, \theta)=\left(\begin{array}{c}
R \sin \phi \cos \theta \\
R \sin \phi \sin \theta \\
R \cos \phi
\end{array}\right) \quad \begin{aligned}
& 0 \leqslant \phi \leqslant \pi \\
& 0 \leqslant \theta<2 \pi
\end{aligned}
$$

1) What is the area of the surface?

$$
\vec{x}_{\phi}=\left(\begin{array}{c}
R \cos \phi \cos \theta \\
R \cos \phi \sin \theta \\
-R \sin \phi
\end{array}\right) \quad \vec{x}_{\theta}=\left(\begin{array}{c}
-R \sin \phi \sin \theta \\
R \sin \phi \cos \theta \\
0
\end{array}\right)
$$

nomal vector $\vec{x}_{\phi} \times \vec{x}_{\theta}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ R \cos \phi \cos \theta & R \cos \phi \sin \theta & -R \sin \phi \\ -R \sin \phi \sin \theta & R \sin \phi \cos \theta & 0\end{array}\right|$

$$
=\left(\begin{array}{l}
R^{2} \sin ^{2} \phi \cos \theta \\
R^{2} \sin ^{2} \phi \sin \theta \\
R^{2} \sin \phi \cos \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
\end{array}\right)
$$

$$
=R^{2} \sin \phi \cdot\left(\begin{array}{cc}
\sin \phi & \cos \theta \\
\sin \phi & \sin \theta \\
\cos \phi
\end{array}\right)
$$

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\left\|\vec{x}_{\phi} \times \vec{x}_{\theta}\right\|}{R^{2} \sin \phi} \cdot d \phi d \theta=R^{2} \cdot 2 \cdot 2 \pi=4 \pi R^{2}
$$

2) If there is water flowing out of he sphere with $\vec{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, then what is the $f \ln x$ of water Be careful to choose outward normal for \vec{N} since the 'ont" of the sphere.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} \vec{v} \cdot\left(\vec{x}_{\phi} \times \vec{x}_{\theta}\right) d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\begin{array}{c}
R \sin \phi \cos \theta \\
R \sin \phi \sin \theta \\
R \cos \phi
\end{array}\right) \cdot\left(\begin{array}{c}
\sin \phi \cos \theta \\
\sin \phi \sin \theta \\
\cos \phi
\end{array}\right) R^{2} \sin \phi \cdot d \phi d \theta \\
& \text { question asks } \\
& \text { for water flow }
\end{aligned}
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{\pi} R^{3} \sin \phi \cdot d \phi d \theta=R^{3} \cdot 2 \cdot 2 \pi=4 \pi R^{3}
$$

3) If the mass is distributed as $\rho(\theta, \phi)=\cos ^{2} \theta$.
then what is the mass? what is the. Center of mass?

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{2} \theta \cdot\left\|\vec{x}_{\phi} \times \vec{x}_{\theta}\right\| \cdot d \phi d \theta \\
&= \int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{2} \theta \cdot R^{2} \sin \phi d \phi d \theta=R^{2} \cdot 2 \cdot \pi=2 z R^{2} \\
& \bar{z}=0 \quad \bar{x}=\bar{y}=0
\end{aligned}
$$

Q: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$
what is the sea of this surface?

$$
\vec{x}(\phi, \theta)=\left(\begin{array}{l}
a \cdot \sin \phi \cos \theta \\
a \cdot \sin \phi \sin \theta \\
b \cdot \cos \phi
\end{array}\right) \quad \begin{aligned}
& 0 \leq \phi \leq \pi \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{\phi}=\cdots \\
& \vec{x}_{\theta}=\cdots
\end{aligned}
$$

