Problem 1 : Surface Integral Part 1: Area, Mass $2 \leq x \leq 3$
Given a curve $C$ defined by $z=x^{2}$ in $x z$-plane with $1 \leq x \leq 2$ Rotate the curve by
$z$-axis and get a surface $R$. $\quad z=x^{2}$,

1. Give a parametrization of the surface $R$.
2. Compute the normal vector.

3. What is the area by surface integral?
4. Suppose the density function $\mu(x, y, z)=z$, compute the total mass of the surface?
5. What is the average $z$-coordinate?
6. 
7. Given the vector field $\vec{v}=\left(\begin{array}{c}y \\ -x \\ z\end{array}\right)$, compute the flux?
8. $m=\int_{0}^{2 \pi} \int_{1}^{2}$


$$
\int \sqrt{4 r^{2}+1} r d r=4 r^{2}+1 \quad \int \sqrt{u} \cdot \frac{d u}{3 / 28}
$$

$$
\begin{aligned}
& d u=8 r d r=\frac{1}{8} \cdot \frac{u^{3 / 2}}{3 / 2} \\
& \text { 2. } \int_{0}^{2 \pi} \int_{1}^{2}\binom{\cdot}{-r} \int_{d r d \theta}^{r \sin \theta} \begin{array}{r}
-\cos \theta \\
r^{2}
\end{array}
\end{aligned}
$$

1. $\int_{0}^{2 \pi} \int_{1}^{2}\left(\begin{array}{cc}2 & r \cdot r \cos \theta \\ 2 & r \cdot r \sin \theta \\ -r\end{array}\right) \cdot\left(\begin{array}{c}r \cos \theta \\ r \sin \theta \\ r^{2}\end{array}\right) d r d \theta$ $=2 \pi \int_{1}^{2}-r()^{2} d r$ $=\ldots$.
pick $-\vec{x}_{r} \times \vec{x}_{\theta}$ to be outward.

$$
=2 \pi \cdot \int_{1}^{2}\left[2(r) \cdot r^{2} \cdot 2-(r)^{2} \cdot r\right] d r=\cdots
$$

$$
\begin{aligned}
& \vec{x}(r, \theta)=\left(\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
r^{2}
\end{array}\right) \\
& 2 . \\
& \vec{x}_{r}=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
2 r
\end{array}\right) \quad \vec{x}_{\theta}=\left(\begin{array}{c}
-r \sin \theta \\
r \cos \theta \\
0
\end{array}\right) \\
& \vec{x}_{\theta}=\left(\begin{array}{c}
-r \sin \theta \\
r \cos \theta \\
0
\end{array}\right) \quad \lambda \\
& \begin{array}{l}
\vec{x}_{r} \times \stackrel{\rightharpoonup}{x}_{\theta}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\cos \theta & \sin \theta & 2 r \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right|=\left(\begin{array}{l}
- \\
\text { Problem 2 : Surface Integral Part 2: Flux } \\
\text { Consider the same sphere as in part 1 with outward normal }
\end{array}\right. \\
\text { 1. Given the vector field } \vec{v}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text {, compute the flux? }
\end{array} \\
& \begin{aligned}
& =2 \pi \cdot \int_{2}^{3} \sqrt{4 r^{2}+1} r d v \\
u & =4 r^{2}+1 \\
& =\left.2 \pi \cdot\left(4 r^{2}+1\right)^{3 / 2} \cdot \frac{1}{12}\right|_{2} ^{3}
\end{aligned} \\
& \begin{array}{l}
=2 \pi \cdot \int_{2}^{3} \sqrt{4 r^{2}+1} r d r \\
=4 r^{2}+1 \\
=\left.2 \pi \cdot\left(4 r^{2}+1\right)^{3 / 2} \cdot \frac{1}{12}\right|_{2} ^{3}
\end{array} \\
& \text { Consider the same sphere as in part } 1 \text { with outward normal, } \\
& \text { 1. Given the vector field } \vec{v}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text {, compute the flux? }
\end{aligned}
$$

Problem 3: Line Integral: Flux
Compute the following line integral:

1. $\vec{v}=\binom{x+y}{2 y}, C: \vec{\gamma}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1, \vec{N}$ the upward normal
2. $\vec{v}=\binom{x y^{2}}{x^{2} y}$, $C$ : unit circle, $\vec{N}$ the outward normal
3. $\vec{r}^{\prime}(t)=\binom{1}{2 t}$


$$
\vec{N}=\binom{-2 t}{1}
$$

$$
\begin{aligned}
\int_{0}^{1} \vec{v} \cdot \vec{N} \cdot d t & =\int_{0}^{1}\binom{t+t^{2}}{2 t^{2}} \cdot\binom{-2 t}{1} d t \\
& =\int_{0}^{1}\left(-2 t^{2}-2 t^{3}+2 t^{2}\right) d t \\
& =-\left.t^{3}\right|_{0} ^{1}=-1
\end{aligned}
$$

2. 

$$
\begin{aligned}
& \text { 2. } \vec{r}(\theta)=\binom{\cos \theta}{\sin \theta} \quad 0 \leq \theta<2 \pi \quad \vec{r}^{\prime}(\theta)=\binom{-\sin \theta}{\cos \theta} \\
& \vec{N}=\binom{\cos \theta}{\sin \theta} \\
& \int_{0}^{2 \pi}\binom{\cos \theta \cdot \sin \theta}{\cos ^{2} \theta \sin \theta} \cdot\binom{\cos \theta}{\sin \theta} d \theta \\
& =\int_{0}^{2 \pi} 2 \cos ^{2} \theta \sin ^{2} \theta d \theta=\int_{0}^{2 \pi} \frac{\sin ^{2} 2 \theta}{2} d \theta=\int_{0}^{2 \pi} \frac{1}{4} \cdot(1-\cos 4 \theta) d \theta \\
& \text { If we use Lien's Thu. }
\end{aligned}
$$

$$
\oint \vec{v} \cdot \vec{N} d t=\iint_{D}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta
$$

$$
\int\binom{v_{1}}{v_{2}} \cdot\binom{y_{\theta}}{-x_{\theta}} d \theta=\int\binom{-v_{2}}{v_{1}} \cdot\binom{x_{\theta}}{y_{\theta}} d \theta=(
$$

$$
=\left.\left(\frac{r^{4}}{4}\right)\right|_{0} ^{1} \cdot 2 \pi
$$

$$
\begin{aligned}
& =\iint_{D}\left[\left(v_{1}\right)_{x}-\left(-v_{2}\right)_{y}\right] d x d y \\
& =\iint_{D}\left(v_{1}\right)_{x}+\left(v_{2}\right)_{y} d x d y
\end{aligned}
$$

