Problem 1: Partial Derivatives/Tangent Plane

For following surfaces:

1) compute the partial derivatives;
2) write up the differential $d f$;
3) find out the tangent plane at the given point;
4) what is the approximation at the second given point;
$5)$ what is the normal vector of the plane you find out.
1. $z=x y^{2} ; x=2, y=1, z=2 ; x=2.01, y=0.09$
(2.) $z=\frac{x y}{x+y} ; x=3, y=1, z=3 / 4 ; x=3.01, y=1.02$
2. $z=e^{3-x^{2}-y^{2}} ; x=1, y=1, z=e ; x=1.1, y=1.1$
3. (1). $\frac{\partial z}{\partial x}=\frac{y-x y \text {. }}{(x+y)^{2}} \quad \frac{\partial z}{\partial y}=\frac{x-x y}{(x+y)^{2}}$

$$
\text { (2) } d f=\frac{y-x y}{(x+y)^{2}} d x+\frac{x-x y}{(x+y)^{2}} d y
$$

$$
\text { (3) } d t=\frac{-2}{16} d x+0 \cdot d y
$$

$$
\begin{aligned}
& \text { (4) } \Delta z \approx-\frac{1}{8} \cdot \Delta x=-\frac{1}{8} \cdot 0.01 \\
& z \approx \frac{3}{4}+\Delta z \approx \frac{3}{4}-\frac{1}{8} \cdot 0.01 \\
& \text { (5) } \vec{N}=\left(\begin{array}{r}
-\frac{1}{8} \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
z-\frac{3}{4}=-\frac{1}{8} \cdot(x-3)
$$

Problem 2: Gradient/Directional Derivatives

For above surfaces:

1) compute the gradient;
2) find the directional derivatives at given point along $\vec{u}=(1 / 2, \sqrt{3} / 2)$;
3) find out the direction where the function increases/decreases the fastest.
4) find out the direction where the function remains the same.
(1) $\nabla f=\frac{1}{(x+y)^{2}}\binom{y-x y}{x-x y}$
(2). $D_{\vec{u}} f=\nabla f \cdot \vec{u}=\binom{-\frac{1}{8}}{0} \cdot\binom{\frac{1}{2}}{\sqrt{3} / 2}=-\frac{1}{16}$
(3) ∇f,

$$
-\nabla f,
$$

(4). $\pm\binom{ 0}{\frac{1}{8}}$

Problem 3: Chain Rule For the following functions:

1) Use chain rule to compute $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$);
2) Evaluate $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$) at given point;
3) Use chain rule to compute all second order derivatives in terms of t (or u and v);
4) Evaluate all second order derivatives in terms of t (or u and v) at given points.
$\sqrt[1]{ } f(x, y)=x^{2} y^{3}+x^{3} y^{2} ; x(t)=t^{2}+t, y(t)=e^{t} ; t=0 ;$
2. $f(x, y)=x^{2}+y^{2} ; x(t)=\cos t, y(t)=2 \sin t ; t=\frac{\pi}{2}$;
3. $f(x, y, z)=x y z ; x(t)=\ln t, y(t)=e^{t}, z(t)=\frac{1}{t} ; t=2$;
4. $f(x, y)=\sin x^{2} y+\cos x y^{2} ; x(u, v)=e^{u v}, y(u, v)=\ln (u v) ; u=1, v=1$;

5.

(1)

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

$$
=\left(y^{3} \cdot 2 x+y^{2} \cdot 3 x^{2}\right) \cdot(2 t+1)+\left(x^{2} \cdot 3 y^{2}+x^{3} \cdot 2 y\right) \cdot e^{t}=g(x, y, t)
$$

(3)

$$
\begin{aligned}
\frac{d^{2} t}{d t^{2}} & =\frac{\partial g}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial g}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial g}{\partial t} \\
& =\left[(2 t+1) \cdot\left(y^{3} \cdot 2+y^{2} \cdot 3 \cdot 2 x\right)+e^{t} \cdot\left(2 x \cdot 3 y^{2}+3 x^{2} \cdot 2 y\right) \cdot\right] \cdot(2 t+1) \\
& +\left[(2 t+1) \cdot\left(3 y^{2} \cdot 2 x+2 y \cdot 3 x^{2}\right)+e^{t} \cdot\left(x^{2} \cdot 6 y+x^{3} \cdot 2\right)\right] \cdot e^{t} \\
& +\left(y^{3} \cdot 2 x+y^{2} \cdot 3 x^{2}\right) \cdot 2+\left(x^{2} \cdot 3 y^{2}+x^{3} \cdot 2 y\right) \cdot e^{t}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \left.\frac{d^{2} f}{d t^{2}}\right|_{t=0}=1 \cdot 2 \cdot 1=2 \\
& x=0 \\
& y=1
\end{aligned}
$$

$\vec{x}(t)$: curve $\quad \vec{y}(t)=f \circ h(t)$

$$
\begin{aligned}
& \frac{d \vec{x}(t)}{d t}=\vec{x}^{\prime}(t)=J_{h} \\
& \vec{y}^{\prime}(t)=J_{f 0 h}=J_{f} \cdot J_{h}=J_{f} \cdot \vec{x}^{\prime}(t) \\
& \vec{z}^{\prime}(t)=J_{g o(f \circ h)}=J_{g} \cdot J_{f 0 h}=J_{g} \cdot J_{f} \cdot \vec{x}^{\prime}(t)
\end{aligned}
$$

A general formula for second order derivatives. (Only for fun, no

$$
\left.\begin{array}{l}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}=f_{x}(x, y) \cdot x^{\prime}(t)+f_{y}(x, y) \cdot y^{\prime}(t) \text {. general } \\
\text { andience }
\end{array}\right)
$$

\mathbb{R}^{\prime} \mathbb{R}^{1}

$$
t \xrightarrow{h}\binom{x(t)}{y(t)} \xrightarrow{s} f(x, y)
$$

$$
J_{h}=\binom{x^{\prime}(t)}{y^{\prime}(t)} \quad J_{S}=\left(\begin{array}{ll}
f_{x}(x, y) & f_{y}(x, y)
\end{array}\right)
$$

$$
\cdots J_{s o h}=\underbrace{J_{s} \cdot J_{h}}=\left(\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}=f_{x} \cdot x^{\prime}+f_{y} \cdot y^{\prime}
$$

$$
\frac{\partial J_{s}(x, y) \cdot J_{h}(t)}{\partial t}=\left[\frac{\partial J_{s}}{\partial t}\right]_{\sigma} \cdot J_{h}(t)+J_{s} \cdot \frac{\partial J_{h}}{\partial t}
$$

$$
\mathbb{R}_{h} \quad \mathbb{R}^{2} \quad \bar{R}^{2}\left(J_{w} \cdot J_{h}\right)^{\top} J_{h}(+)+J_{s} \cdot \frac{\partial J_{h}}{\partial t}
$$

$t \xrightarrow{h}\binom{\left.x_{1}+\right)}{y(+)} \xrightarrow{w}\binom{\mathbb{R}_{x}(x, y)}{f_{y}(x, y)} \quad \begin{aligned} & ()^{\top} \text { means transpose of a matrix. } \\ & \text { we use }()^{\top} \text { here because at }\end{aligned}$ we use ($)^{\top}$ here because the comention of J is $\binom{f_{x}^{\prime}(t)}{f_{y}^{\prime}(t)}$, but we need $J_{h}=\binom{x^{\prime}}{y^{\prime}} \quad J_{w}=\left(\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right)$ ($\left.f_{x}^{\prime}(t) f_{y}^{\prime}(t)\right)$ to match.

Problem 1 : Partial Derivatives/Tangent Plane

For following surfaces:

1) compute the partial derivatives;
2) write up the differential $d f$;
3) find out the tangent plane at the given point;
(4) what is the approximation at the second given point;
$5)$ what is the normal vector of the plane you find out.

$$
\begin{aligned}
& 1 . z=x y^{2} ; x=2, y=1, z=2 ; x=2.01, y=0.09 \\
& \text { 2. } z=\frac{x y}{x+y} ; x=3, y=1, z=3 / 4 ; x=3.01, y=1.02 \\
& \text { 3. } z=e^{3-x^{2}-y^{2}} ; x=1, y=1, z=e ; x=1.1, y=1.1
\end{aligned}
$$

1. (1) $\frac{\partial z}{\partial x}=y^{2} \quad \frac{\partial z}{\partial y}=2 x y$
(4) $\Delta z \approx . \Delta x+4 \Delta y$

$$
=0.01+4 \cdot(-0.01)
$$

$$
\text { (2) } \quad d f=y^{2} d x+2 x y d y
$$

$$
=-0.03
$$

$$
z \approx 2-0.03=1.97
$$

$$
\begin{aligned}
& \text { (3) }\left.d f\right|_{\vec{x}_{x}}=d x+4 d y \\
& z-2=(x-2)+4(y-1)
\end{aligned}
$$

(5) $\vec{M}=\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)$

Problem 2: Gradient/Directional Derivatives
For above surfaces:
(1) compute the gradient;
2) find the directional derivatives at given point along $\vec{u}=(1 / 2, \sqrt{3} / 2)$;
3) find out the direction where the function increases/decreases the fastest.
$\$$) find out the direction where the function remains the same.
(1) $\quad \nabla t=\binom{y^{2}}{2 x y}$
$\left.\begin{aligned} & \text { (2) } \\ & \nabla f \cdot \vec{u} \\ & D_{\vec{u}}\end{aligned}\right|_{\vec{x}_{0}}=\binom{y^{2}}{2 x y} \cdot\binom{1 / 2}{\sqrt{3} / 2}\left|=\frac{y^{2}}{2}+\sqrt{3} x y\right|_{\vec{x}_{0}}=\frac{1}{2}+\sqrt{3} \cdot 2$
(3) $\nabla f,-\nabla f$
(4) $\binom{-4}{1}$ or $\binom{4}{-1} \quad D_{\vec{n}} f=\nabla f \cdot \vec{u}=0 \quad\binom{a}{b} \cdot\binom{-b}{a}$

Problem 3: Chain Rule For the following functions:

1) Use chain rule to compute $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$);
2) Evaluate $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$) at given point;
3) Use chain rule to compute all second order derivatives in terms of t (or u and v);
4) Evaluate all second order derivatives in terms of t (or u and v) at given points.
1. $f(x, y)=x^{2} y^{3}+x^{3} y^{2} ; x(t)=t^{2}+t, y(t)=e^{t} ; t=0 ;$
2. $f(x, y)=x^{2}+y^{2} ; x(t)=\cos t, y(t)=2 \sin t ; t=\frac{\pi}{2}$;

$$
\begin{aligned}
& \text { 3. } f(x, y, z)=x y z ; x(t)=\ln t, y(t)=e^{t}, z(t)=\frac{1}{t} ; t=2 ; \quad \text { xe } \quad \boldsymbol{y}=\boldsymbol{u} \\
& \text { y. } f(x, y)=\sin x^{2} y+\cos x y^{2} ; x(u, v)=e^{u v}, y(u, v)=\ln (u v) ; u=1, v=1 ; \quad f_{u u}
\end{aligned}
$$

4.

(1)

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=2 x y \cdot \cos x^{2} y+y^{2} \cdot\left(-\sin x y^{2}\right) & \frac{\partial x}{\partial u}=v \cdot e^{u v} \\
\frac{\partial f}{\partial y}=\frac{\partial y}{\partial u}=\frac{1}{u} \\
x^{2} \cos ^{2} y+2 x y \cdot\left(-\sin x y^{2}\right) & \frac{\partial x}{\partial v}=u \cdot e^{u v} \frac{\partial y}{\partial v}=\frac{1}{v}
\end{array}
$$

$$
\begin{aligned}
\frac{\partial f}{\partial u}= & \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} \\
= & \left(2 x y \cdot \cos x^{2} y-y^{2} \cdot \frac{\sin x y^{2}}{\square}\right) \cdot v \cdot e^{u v} \\
& +\left(x^{2} \cos x^{2} y-2 x y \cdot-\sin x y^{2}\right) \frac{1}{u} \\
\frac{\partial f}{\partial v}= & \left(2 x y \cdot \cos x^{2} y-y^{2} \cdot \sin x y^{2}\right) \cdot u \cdot e^{u v} \\
& +\left(x^{2} \cos x^{2} y-2 x y \cdot-\sin x y^{2}\right) \frac{1}{v}
\end{aligned}
$$

$$
\underline{E}=g(x, y, u, v)
$$

(2) $\left.\frac{\partial t}{\partial u}\right|_{\vec{x}_{0}}=\left.1 \quad \frac{\partial t}{\partial v}\right|_{\vec{x}_{0}}=1$.
(3) $f_{u n}=\frac{\partial g}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial g}{\partial y} \cdot \frac{\partial y}{\partial u}+\frac{\partial g}{\partial u}$ (Just one example)

$$
\begin{aligned}
& =\left(v \cdot e_{J}^{u v} \cdot\left[2 y \cos ^{2} x y+\underset{v}{2 x y} \cdot 2 x y \cdot\left(-\sin x^{2} y\right)-y_{0}^{2} \cdot \frac{y^{2} \cdot \cos x y^{2}}{0}\right]\right. \\
& +\frac{1}{u} \cdot\left[2 x \cdot \cos x^{2} y+x^{2} \cdot 2 x y \cdot-\sin x^{2} y-2 y \cdot(-\sin) x y^{2}-\right. \\
& \left.\left.2 x y \cdot y^{2} \cdot\left(-\cos x y^{2}\right)\right]\right) \cdot \text { ute eur }
\end{aligned}
$$

$$
\begin{aligned}
& +\left(v \cdot e^{u v} \cdot\left[2 x \cdot \cos x^{2} y+2 x y \cdot\left(-\sin x^{2} y\right) \cdot x^{2}-2 y \cdot \sin x y^{2}-y^{2} \cdot \cos x y^{2} \cdot x \cdot 2 y\right]\right. \\
& \left.+\frac{1}{u} \cdot\left[x^{2} \cdot\left(-\sin x^{2} y\right) \cdot x^{2}-2 x \cdot-\sin x y^{2}-2 x y \cdot\left(-\cos x y^{2}\right) \cdot 2 x y\right]\right) \cdot \frac{1}{u} \\
& +\left(2 x y \cdot \cos x^{2} y-y^{2} \cdot \sin x y^{2}\right) \cdot v^{2} \cdot e^{u v}+\left(x^{2} \cos x^{2} y-2 x y \cdot-\sin x y^{2}\right) \frac{-1}{u^{2}}
\end{aligned}
$$

(4) $\left.f_{u n}\right|_{\overrightarrow{x_{0}}}=1 \cdot 2 \cdot 1 \cdot e+e \cdot 2-1=4 e-1$

Problem 1 : Partial Derivatives/Tangent Plane
For following surfaces:

1) compute the partial derivatives;
2) write up the differential $d f ; \quad d t=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\cdots$.
3) find out the tangent plane at the given point;
4) what is the approximation at the second given point;

5) what is the normal vector of the plane you find out.

1. $z=x y^{2} ; x=2, y=1, z=2 ; x=2.01, y=0.09$
2. $z=\frac{x y}{x+y} ; x=3, y=1, z=3 / 4 ; x=3.01, y=1.02$
(3.) $z=e^{3-x^{2}-y^{2}} ; x=1, y=1, z=e ; x=1.1, y=1.1$
3. $\left\{\begin{array}{l}\frac{\partial z}{\partial x}=e^{3-x^{2}-y^{2}} \cdot(-2 x) \\ \frac{\partial z}{\partial y}=e^{3-x^{2}-y^{2}} \cdot(-2 y)\end{array}\right.$

$$
\begin{aligned}
&=e ; x=1.1, y=1.1 \\
& \text { (2) } \\
& \quad d y= e^{3-x^{2}-y^{2}} \cdot(-2 x) d x+ \\
& e^{3-x^{2}-y^{2}} \cdot(-2 y) d y
\end{aligned}
$$

(3) $d f=-2 e d x-2 e d y$

$$
z-e=-2 e(x-1)-2 e(y-1)
$$

(5) $\stackrel{\rightharpoonup}{N}=\left(\begin{array}{c}-2 e \\ -2 e \\ -1\end{array}\right)$
(4). $-2 e \cdot 0.1-2 e \cdot 0.1 \approx z=e \quad z \approx 0.6 e$

Problem 2: Gradient/Directional Derivatives
For above surfaces:

1) compute the gradient;
2) find the directional derivatives at given point along $\vec{u}=(1 / 2, \sqrt{3} / 2)$;
3) find out the direction where the function increases/decreases the fastest.
4) find out the direction where the function remains the same.
3. (1) $\nabla f=e^{3-x^{2}-y^{2}} \cdot\binom{-2 x}{-2 y}$

$$
\nabla f=\binom{a}{b} \quad\binom{-b}{a}
$$

(2) $\begin{aligned} D_{\vec{n}} f=\nabla f \cdot \vec{u} & =e^{3-x^{2}-y^{2}} \cdot(-x \\ & =e \cdot(-1-\sqrt{3})\end{aligned}$

$$
\begin{aligned}
& \text { (3) } \nabla f=\binom{-2}{-2} \cdot e \text { increases } \\
& -\nabla f=\binom{2}{2} \cdot e \text { decreases } \\
& \text { (4) }\binom{1}{-1} \text { and }\binom{-1}{1} \text { remains same } \\
& \nabla f=\binom{-2}{-2} \cdot e \text { increases } \\
& \nabla f \cdot \vec{u}=\|\nabla f\| \cdot \cos \theta \\
& \begin{array}{l}
=\left\{\begin{array}{lll}
\text { maximal } & \cos \theta=1 & 0 \\
\text { minimal } & \cos \theta=-1 & \pi \\
0 & \cos \theta=0 & \frac{\pi}{2}
\end{array}\right. \\
\int_{0} \frac{\pi}{2}
\end{array}
\end{aligned}
$$

Problem 3: Chain Rule For the following functions:

1) Use chain rule to compute $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$);
2) Evaluate $\frac{d f}{d t}$ (or $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$) at given point;
3) Use chain rule to compute all second order derivatives in terms of t (or u and v);
4) Evaluate all second order derivatives in terms of t (or u and v) at given points.
1. $f(x, y)=x^{2} y^{3}+x^{3} y^{2} ; x(t)=t^{2}+t, y(t)=e^{t} ; t=0 ;$
2. $f(x, y)=x^{2}+y^{2} ; x(t)=\cos t, y(t)=2 \sin t ; t=\frac{\pi}{2}$;

3 $f(x, y, z)=x y z ; x(t)=\ln t, y(t)=e^{t}, z(t)=\frac{1}{t} ; t=2$;
4. $f(x, y)=\sin x^{2} y+\cos x y^{2} ; x(u, v)=e^{u v}, y(u, v)=\ln (u v) ; u=1, v=1$;
3. $\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial f}{\partial z} \cdot \frac{d z}{d t}$

$$
=y z \cdot \frac{1}{t}+x z \cdot e^{t}+x y \cdot \frac{-1}{t^{2}}=g(x, y, z, t)
$$

$$
x=x(t)
$$

$$
y=y(t)
$$

(2)

$$
\begin{aligned}
\left.\frac{d t}{d t}\right|_{t=2} & =e^{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\ln 2 \cdot \frac{1}{2} \cdot e^{2}+\ln 2 \cdot e^{2} \cdot \frac{-1}{4} \\
& =\frac{e^{2}}{4}(1+\ln 2)
\end{aligned}
$$

$$
z=z(t)
$$

(3)

$$
\frac{d t^{\prime}}{d t}=\frac{\partial g}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial g}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial g}{\partial z} \cdot \frac{d z}{d t}+\frac{\partial g}{\partial t}
$$

$$
=\left(z \cdot e^{t}+y \cdot \frac{-1}{t^{2}}\right) \cdot \frac{1}{t}+\left(z \cdot \frac{1}{t}+x \cdot \frac{-1}{t^{2}}\right) \cdot e^{t}+\left(y-\frac{1}{t}+x \cdot e^{t}\right) \cdot \frac{-1}{t^{2}}
$$

(4)

$$
\begin{aligned}
\left.\frac{d+1}{d t}\right|_{t=2}= & \left.\left(\frac{1}{2} \cdot e^{2}+e^{2} \cdot \frac{-1}{4}\right) \cdot \frac{1}{2}+\left(\frac{1}{2} \cdot \frac{1}{2}+\ln 2 \cdot \frac{-1}{4}\right) \cdot e^{2}+\right)^{+\left(y z \cdot \frac{-1}{t^{2}}\right.}+x z \cdot e^{t} \\
& \left(e^{2} \cdot \frac{1}{2}+\ln 2 \cdot e^{2}\right) \cdot \frac{-1}{4}+\left(e^{2} \cdot \frac{1}{2} \cdot \frac{-1}{4}+\frac{\ln 2 \cdot \frac{1}{2} \cdot e^{2}\left(+x y \cdot \frac{2}{t^{3}}\right)}{+}\right. \\
= & e^{2} \cdot\left(\frac{1}{8}+\frac{1}{4}-\frac{1}{8}-\frac{1}{8}\right)+e^{2} \cdot \ln 2 \cdot\left(-\frac{1}{4}-\frac{1}{4} e^{2} \cdot \ln 2 \cdot \frac{2}{2^{3}}\right) \\
= & e^{2} \cdot\left(\frac{1}{8}+\frac{1}{4} \ln 2\right)
\end{aligned}
$$

