Problem 1 : Line integral of Functions Compute the following line integral:

$$
\vec{\gamma}^{\prime}=\binom{1}{2 t}
$$

1. $f(x, y)=x y, C: \vec{\gamma}(t)=\binom{t}{t^{2}}, 0 \leq t \leq 1$

$$
\int_{0}^{1} f \cdot \cdot \| \vec{r}^{\prime}(t) 1 \cdot d t \stackrel{u n 1+4 t^{2}}{=} \int_{1}^{5} \frac{u x}{4} \cdot \overrightarrow{d u} \frac{d u}{8}
$$

2. $f(x, y, z)=x^{2}+y^{2}, C: \vec{\gamma}(t)=\left(\begin{array}{c}3 \cos t \\ 3 \sin t \\ t\end{array}\right), 0 \leq t \leq 2 \pi$

$$
-\int_{1}^{5} \frac{1}{32} u^{\frac{1}{2}} d u
$$

3. If C is the quarter of the unit circle that lies in the first quadrant, then what is the average distance to the origin on C ? What is the average polar angle θ ?
4. $\int_{0}^{2 \pi}\left(3^{2} \cos ^{2} t+3^{2} \sin ^{2} t\right) \cdot \sqrt{10} d t$

$$
=\int_{0}^{22} 9 \cdot \sqrt{10} \cdot d t=18 \cdot \sqrt{10} \pi
$$

$$
\text { 3. } \begin{aligned}
& \quad \vec{\gamma}(\theta)=\binom{\cos \theta}{\sin \theta} \quad 0 \leq \theta \leq \frac{\pi}{2} . \\
& \left.\int_{0}^{\frac{\pi}{2}} \cdot \right\rvert\, \vec{r}^{\prime}(\theta) \| d \theta=\frac{\pi}{2} \\
& \int_{0}^{\frac{z}{2}} \cdot 1 \cdot\left\|\vec{l}^{\prime}(\theta)\right\| d \theta=\frac{\pi}{2} \\
& \int_{0}^{\frac{\pi}{2}} \theta \cdot\left\|\operatorname{lis}^{\prime}(\vec{b})\right\| d \theta=\frac{\pi^{2}}{8}
\end{aligned}
$$

Problem 2: Line integral of Vector Fields Compute the following line integral of vector fields:

Ave angle $=\frac{\pi}{4}$.

1. $\vec{F}=\nabla f$ where $f(x, y)=x^{2}+y^{2}+x y, C: \vec{\gamma}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$
2. $\vec{F}=\operatorname{curl}\left(\begin{array}{c}x y \\ y z \\ z x\end{array}\right), C: \vec{\gamma}(t)=\left(\begin{array}{c}3 \cos t \\ 3 \sin t \\ t\end{array}\right), 0 \leq t \leq 2 \pi$
3. $\vec{F}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y & y z & z x\end{array}\right|=\left(\begin{array}{c}-y \\ -z \\ -x\end{array}\right)$

$$
\int_{0}^{2 \pi}\left(\begin{array}{c}
-3 \sin t \\
-t \\
-3 \cos t
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \sin t \\
3 \cos t \\
1
\end{array}\right) d t
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(9 \sin ^{2} t-3 t \cos t-3 \cos t\right) d t \\
& =9 \int_{0}^{2 \pi} \sin ^{2} t d t-\int_{0}^{2 \pi} 3 t \cos t d t \\
& =9 \cdot \pi-3 \cdot\left(-\int_{0}^{2 \pi} \sin t d t\right)=9 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } \nabla f=\binom{2 x+y}{2 y+x} \\
& \int_{0}^{1} \vec{r} \cdot \vec{r}^{\prime}(t) \cdot d t \\
& =\int_{0}^{1}\binom{2 t+t^{2}}{2 t^{2}+t} \cdot\binom{1}{2 t} d t \\
& =\int_{0}^{1}\left(2 t+t^{2}+4 t^{3}+2 t^{2}\right) d t \\
& =3
\end{aligned}
$$

Problem 3: Surface Area

$$
\sin (x)
$$

1. Find the area of the region R bounded by the curves $x y=1, x y=2$ and $\mathbf{\lambda} y^{2}=1$, $x y^{2}=2$.
2. Find the area of the surface that is the graph of $z=x+y^{2}$ for $0 \leq x \leq 1$ and $0 \leq y \leq 2$.
3. Find the area of the ellipse that is cut from the plane $2 x+3 y+z=6$ by the cylinder $x^{2}+y^{2}=2$.$\Rightarrow\left\{\begin{array}{l}x=\frac{u^{2}}{v} \\ y=\frac{v}{u}\end{array}\right.$
4.

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=x y \Rightarrow \\
v=x y^{2}
\end{array} \Rightarrow . \operatorname{det} J=\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
y & x \\
y^{2} & 2 x y
\end{array}\right|=2 x y^{2}-x y^{2}=x y^{2}\right. \\
& D:=\{(u, v) \mid 1 \leq u \leq 2,\} \\
& 1 \leq v \leq 2
\end{aligned}
$$

$$
\iint_{D}+\frac{1}{x y^{2}} d A=\int_{1}^{1 \leq v \leq 2} \int_{1}^{2} \frac{1}{v} d u d v
$$

$$
\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=1 \cdot(\ln 2-\ln 1)=\ln 2 .
$$

$$
\begin{aligned}
& \text { 2. } \vec{\gamma}(x, y)=\left(\begin{array}{c}
x \\
y \\
x+y^{2}
\end{array}\right) \quad \vec{\gamma}_{x}=\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \quad \vec{\gamma}_{y}=\left(\begin{array}{c}
0 \\
1 \\
2 y
\end{array}\right) \\
& \left.11 \vec{\gamma}_{x} \times \vec{\gamma}_{y \|=11}^{i} \begin{array}{ccc}
k \\
1 & 0 & 1 \\
0 & 1 & 2 y
\end{array} \right\rvert\, 1=11\left(\begin{array}{c}
-1 \\
-2 y \\
1
\end{array}\right) \|=\sqrt{4 y^{2}+2} \\
& \int_{0}^{2} \int_{0}^{1} \sqrt{4 y^{2}+2} \cdot d x d y=\int_{0}^{2} \sqrt{4 y^{2}+2} d y \quad \text { use } \tan ^{2} \theta=\operatorname{sen}^{2} \theta-1
\end{aligned}
$$

3.

$$
\iint_{D: x^{2}+y^{2} \leq 2} \sqrt{1+4+9} \cdot d A=\sqrt{14} \cdot 2 \pi \cdot \sqrt{2} .
$$

