Problem 1 : Conservative Vector Field

1. Given
$$\vec{F} = \begin{pmatrix} 2xe^{xy} + x^2ye^{xy} \\ x^3e^{xy} + 2y \end{pmatrix}$$
, is \vec{F} conservative or not? If so, find the potential function.

2. Given
$$\vec{F} = \begin{pmatrix} g \\ z \\ x \end{pmatrix}$$
, is \vec{F} conservative or not?

- 3. Consider the vector field in 1.1, C is the upper half unit circle starting from (-1,0) to (1,0), compute the line integral of vector field.
- 4. Given a vector field $\vec{F} = (P(x, y), Q(x, y))$ on \mathbb{R}^2 . Prove that \vec{F} is conservative if and only if $P_y = Q_x$ if and only if the line integral of \vec{F} does not depend on the path if and only if the line integral of \vec{F} over a closed curve is 0.

Problem 2 : Green Theorem

Compute the following line integral over ∂D in two ways: by definition and by Green's Theorem:

1.
$$\vec{F} = \begin{pmatrix} 2xe^{xy} + x^2ye^{xy} \\ x^3e^{xy} + 2y \end{pmatrix}, D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}$$

2. $\vec{F} = \begin{pmatrix} y\cos x \\ y\sin x \end{pmatrix}, D = \{(x, y) \mid 0 \le \pi/2, 1 \le y \le 2\}$
3. $\vec{F} = \begin{pmatrix} x\sqrt{y} \\ \sqrt{x+y} \end{pmatrix}, D = \{(x, y) \mid 1 \le x \le 2, 2x \le y \le 4\}$

Problem 3: Flux Integral

Compute the following line integral:

1. $\vec{v} = \begin{pmatrix} x+y\\ 2y \end{pmatrix}, C: \vec{\gamma}(t) = (t, t^2), 0 \le t \le 1, \vec{N}$ the upward normal 2. $\vec{v} = \begin{pmatrix} xy^2\\ x^2y \end{pmatrix}, C:$ unit circle, \vec{N} the outward normal