Problem 1 : Conservative Vector Field

1. Given $\vec{F}=\binom{2 x e^{x y}+x^{2} y e^{x y}}{x^{3} e^{x y}+2 y}$, is \vec{F} conservative or not? If so, find the potential function.
2. Given $\vec{F}=\left(\begin{array}{l}y \\ z \\ x\end{array}\right)$, is \vec{F} conservative or not?
3. Consider the vector field in $1.1, C$ is the upper half unit circle starting from $(-1,0)$ to $(1,0)$, compute the line integral of vector field.
4. Given a vector field $\vec{F}=(P(x, y), Q(x, y))$ on \mathbb{R}^{2}. Prove that \vec{F} is conservative if and only if $P_{y}=Q_{x}$ if and only if the line integral of \vec{F} does not depend on the path if and only if the line integral of \vec{F} over a closed curve is 0 .

Problem 2: Green Theorem

Compute the following line integral over ∂D in two ways: by definition and by Green's Theorem:

1. $\vec{F}=\binom{2 x e^{x y}+x^{2} y e^{x y}}{x^{3} e^{x y}+2 y}, D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$
2. $\vec{F}=\binom{y \cos x}{y \sin x}, D=\{(x, y) \mid 0 \leq \pi / 2,1 \leq y \leq 2\}$
3. $\vec{F}=\binom{x \sqrt{y}}{\sqrt{x+y}}, D=\{(x, y) \mid 1 \leq x \leq 2,2 x \leq y \leq 4\}$

Problem 3: Flux Integral
Compute the following line integral:

1. $\vec{v}=\binom{x+y}{2 y}, C: \vec{\gamma}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1, \vec{N}$ the upward normal
2. $\vec{v}=\binom{x y^{2}}{x^{2} y}, C$: unit circle, \vec{N} the outward normal
