$08 / 24 / 21$ Week 2.
Recall linear equation is

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

b. a_{i} constant
x : variable.
system of linear equations $b=\frac{a_{i j}}{x_{1} \ldots x_{h}}$ constant.

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

solution set is all $\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ s.t. it satisfies all Q: How to solve the system?
Ex:

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=2 \\
-2 x_{1}-x_{2}+0 \cdot x_{3}=-1 \\
x_{1}-x_{2}+2 x_{3}=2
\end{array}\right.
$$

3 variable
3 equations.

$$
m=3 \quad n=3
$$

"Gaussian Elimination".

$$
\begin{align*}
& \text { (2) }+(1) \times 2:-2 x_{1}-x_{2}+0 \cdot x_{3}=-1 \\
& +\left(x_{1}+2 x_{2}+x_{3}\right) \times 2+2 \times 2 \\
& \text { simplify: } \quad 3 x_{2}+2 x_{3}=3 \\
& \text { (3) - (1) }: 0 \cdot x_{1}-3 x_{2}+x_{3}=0 \\
& \left\{\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =2 \\
3 x_{2}+2 x_{3} & =3 \\
-3 x_{2}+x_{3} & =0
\end{aligned}\right. \tag{1}
\end{align*}
$$

(3) ${ }^{\prime}+(2)^{\prime}: 0 x_{2}+3 x_{3}=3$

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =2 \quad \text { (1) "upper triangular form" } \\
3 x_{2}+2 x_{3} & =3 \quad \text { (2) } \\
3 x_{3} & =3 \quad \text { (3)" }
\end{aligned}\right.
$$

Using (3": $\quad x_{3}=1$
then (2): $3 x_{2}+2 \cdot 1=3 \quad \Rightarrow \quad x_{2}=\frac{1}{3}$
then (1): $x_{1}+\frac{2}{3}+1=2 \Rightarrow x_{1}=\frac{1}{3}$
So the solution for this system of equations is

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{3} \\
x_{2}=\frac{1}{3} \\
x_{3}=1
\end{array} \quad \text { or } \quad\left(\frac{1}{3}, \frac{1}{3}, 1\right)\right.
$$

Matrix Notation

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$\frac{\text { coefficient matrix }}{a_{11} a_{12}}$ is

$$
m\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

angmented matrix ${ }^{n}$ is

$$
m\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

$n+1$
Ex:

$$
\left\{\begin{align*}
x_{1}+2 x_{2}+x_{3} & =2 \tag{c}\\
-2 x_{1}-x_{2}+0 \cdot x_{3} & =-1 \\
x_{1}-x_{2}+2 x_{3} & =2
\end{align*}\right.
$$

c.m.

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \tag{3}\\
-2 & -1 & 0 \\
1 & -1 & 2
\end{array}\right)
$$

a.m.
(2) $=$ (2) + (1) $\times 2$
(3)

$$
\left\{\begin{align*}
x_{1}+2 x_{2}+x_{3} & =2 \tag{3}\\
3 x_{2}+2 x_{3} & =3 \\
-3 x_{2}+x_{3} & =0
\end{align*}\right.
$$

c. m.

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 2 \\
0 & -3 & 1
\end{array}\right)
$$

a.m. $\left(\begin{array}{rrr|r}1 & 2 & 1 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & -3 & 1 & 0\end{array}\right)$

Row Operations (on augmented matvix):

1) Replace row i by row $j \times$ nuber. $;(i \neq j$)
2) Switch. row i with ronj. (i\#j)
3) Multiply row i by nuber. (non-zero)

Replace row 3 by
row $3+$ row 2 .

$$
\left(\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
0 & 3 & 2 & 3 \\
1 & 0 & 3 & 3
\end{array}\right) \leftarrow \text { echelon form. }
$$

Def: A rectangular matrix is in echelon form if

1. All non-zens rows are above any rows of all zeros.
2. Each leading entry of a row is in a colum to strict the right of leading entry of the sow above it.

$$
\begin{align*}
& \text { by. }\left(\begin{array}{lll}
x & x & x \\
0 & 0 & x \\
0 & 0 & 0
\end{array}\right) \\
& \text { (2) }\left(\begin{array}{lll}
x & x & x \\
0 & x & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
5 \\
5
\end{array}\left(\begin{array}{lll}
x & x & x \\
0 & x & 0 \\
0 & x & x
\end{array}\right) \\
& \text { (3) }\left(\begin{array}{lll}
x & x & x \\
0 & 0 & 0 \\
0 & 0 & x
\end{array}\right) \\
& \text { (4) }\left(\begin{array}{llll}
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { Ext. }\left\{\begin{array}{c}
x_{1}+2 x_{2}-x_{3}=2 \\
2 x_{1}+4 x_{2}-3 x_{3}=1 \\
3 x_{1}+6 x_{2}-x_{3}=-2
\end{array}\right. \tag{0}\\
& \left(\begin{array}{cccc}
1 & 2 & -1 & 2 \\
2 & 4 & -3 & 1 \\
3 & 6 & -1 & -2
\end{array}\right) \underset{\substack{\text { row } 2-\\
(\text { row } 1) \times 3}}{\substack{\text { row } 1) \times 2}}\left(\begin{array}{cccc}
1 & 2 & -1 & 2 \\
0 & 0 & -1 & -3 \\
0 & 0 & 2 & -8
\end{array}\right) \tag{3}\\
& \xrightarrow{\text { row } 3+}\left(\begin{array}{cccc}
1 & 2 & -1 & 2 \\
0 & 0 & -1 & \frac{-3}{2} \\
0 & 0 & 0 & \frac{1-14}{7}
\end{array}\right)
\end{align*}
$$

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{2}-x_{3} & =2 \\
-x_{3} & =-3 \\
0 \cdot x_{1}+0 \cdot x_{2} & +0 \cdot x_{3}
\end{array}=-14 \leftarrow\right. \text { impossible. }
$$

So there is no solution.
Conclusion: A system of linear equations has no solutions (called inconsistent) if and only if there is a pivot in the last colum of the echelon form of $a . m$.

$$
E \times 2:\left\{\begin{align*}
& x_{2}+2 x_{3}+x_{4}=0 \tag{1}\\
& x_{1}-x_{2}+x_{4}=1 \\
& 2 x_{1}-x_{2}+2 x_{3}+3 x_{4}=2
\end{align*}\right.
$$

$\operatorname{a.m} \cdot\left(\begin{array}{rrrr|r}0 & 1 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 & 1 \\ 2 & -1 & 2 & 3 & 2\end{array}\right)$
(2) \leftrightarrow (1)

$$
\left(\begin{array}{cccc|c}
1 & -1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 \\
2 & -1 & 2 & 3 & 2
\end{array}\right)
$$

(3) \rightarrow (3) $-(1) \times 2$

$$
\left(\begin{array}{cccc|c}
1 & -1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0
\end{array}\right)
$$

(3) \rightarrow (3) - (2)

$$
\left(\begin{array}{cccc|c}
1 & -1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left\{\begin{array} { r l }
{ x _ { 1 } - x _ { 2 } + x _ { 4 } = 1 } \\
{ x _ { 2 } + 2 x _ { 3 } + x _ { 4 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=-2 x_{3}-2 x_{4}+1 \\
x_{2}=-2 \cdot x_{3}-x_{4} \\
x_{3} \text { is free } \\
x_{4} \text { is free }
\end{array}\right.\right.
$$

