Week 7 Thurs day.
Recall $\operatorname{det}(A) \quad A \in M_{3 \times 3}(\mathbb{R})$

$$
\operatorname{det}(A)=\operatorname{vol}(<\text { column veetors }>)
$$

$$
\operatorname{det}(A)=0 \Leftrightarrow \operatorname{span}(\vec{a}, \vec{b}, \vec{c})=\operatorname{span}\left(t_{w_{0}}\right.
$$

of them)
$\Leftrightarrow \vec{a}, \vec{b}, \vec{c}$ linear dependent
$\Leftrightarrow A \cdot \vec{x}=0$ has non-trivial solutions. $\Leftrightarrow A$ is not infective \Leftrightarrow not smpertive

Q: How to desuibe A if A is not infective not surjective
Ans: Rank.

Subspace

$$
A: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}
$$

Colum Spare of A (image)
$\operatorname{Nall}(A)$
$\operatorname{Col}(A)$

Subspaces of $\mathbb{R}^{\prime \prime}$.
Def. A subset V of \mathbb{R}^{\prime} is called a subspace if
(1) $\vec{o} \in V$;
(2) $\vec{u}, \vec{v} \in V$ then $\vec{u}+\vec{v} \in V$; closed under (3) $\vec{u} \in V$, then $\forall c \in \mathbb{R} \quad c \cdot \vec{u} \in V$ addition)

Prop. For any linear transformation A, the $\operatorname{Null}(A)$ and $\operatorname{Col}(A)$ are both subspaces of $\mathbb{R}^{\prime \prime}$.
pf. $\operatorname{Null}(A)$ is dear a subspace using deft of linear transformation.

$$
\text { Col(A): } \begin{aligned}
& \overrightarrow{0} \\
&=A(\vec{o}) \\
& \text { if } \quad \vec{u}=A(\vec{a}) \quad \vec{v}=A(\vec{b}) \text { then } \\
& A(\vec{a}+\vec{b})=A(\vec{a})+A(\vec{b})=\vec{u}+\vec{v} \\
& \text { if } \vec{u}=A(\vec{a}) \text { then } \\
& A(c \cdot \vec{a})=c \cdot A(\vec{a})=c \cdot \vec{u} v
\end{aligned}
$$

Def. (basis) If $V \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n}. and $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r} \in V$ satisfy
(1) $\operatorname{span}\left\langle\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \vec{v}_{r}\right\rangle=V$
(2) $\vec{v}_{1}, \cdots, \vec{v}_{2}$ linearly independ.
then we call $\left\{\vec{v}_{1}, \ldots \vec{v}_{r}\right\}$ is a basis for V. (we also say V is a subspace generated by $\left\{\vec{v}_{1}, \ldots, \vec{v}_{+}\right\}$

Rok: basis is not mighe for a given V.
if $\quad \vec{v}_{1}, \vec{v}_{2}$ is a basis
then $\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{2}$ is also a basis.

$$
\lambda_{1}\left(\stackrel{\rightharpoonup}{v}_{1}+\vec{l}_{2}\right)+\lambda_{2} \vec{v}_{2}=\lambda_{1} \vec{v}_{1}+\left(\lambda_{1}+\lambda_{2}\right) \vec{v}_{2}
$$

Q: Is it possible to find two basis with different number of vectors?

Ans: No, it is not possible.
pt: Suppose $\left\{\vec{e}_{1}, \cdots, \vec{e}_{r}\right\}$ is one basis

$$
\left\{\vec{d}_{1}, \ldots, \vec{d}_{e}\right\} \text { is another basis } r>t .
$$

then \vec{e}_{i} is a linear combination of $\vec{d}_{1}, \cdots, \overrightarrow{d_{l}}$.
say $\quad \vec{e}_{i}=\sum_{1 \leqslant j \leqslant t} \alpha_{i j} \vec{d}_{j}$
Similarly $\quad \vec{d}_{j}=\sum_{1 \leqslant i \leqslant r .} \beta_{i j} \vec{e}_{i}$
denote A to be the matrix with $A i j=\alpha_{i j}$

$$
B
$$

$$
B_{i j}=\beta_{i j}
$$

then

$$
\begin{aligned}
& A \cdot B=I_{r} \\
& B \cdot A=I_{t}
\end{aligned}
$$

this is impossible if $r>t$.
since $B \in M_{t \times r}$ and echelon form of B has free variables. $\exists \vec{x} \neq \overrightarrow{0}$ s.t $B \cdot \vec{x}=\overrightarrow{0} \quad$ therefore $\overrightarrow{0}=A \cdot B \cdot \vec{x}=I_{r} \cdot \vec{x}=\vec{x}$
contradiction.

Def(dimension) If $V \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} and. any basis of V contains r vectors, then. we say r is the dimension of V.
eg. $\operatorname{Num}(A)$.

$$
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
5 & 2 & 2
\end{array}\right)
$$

$$
A \cdot \vec{x}=\overrightarrow{0}
$$

solve this system using now reduction

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 0 & 2 & 0 \\
2 & 1 & 0 & 0 \\
5 & 2 & 2 & 0
\end{array}\right) \xrightarrow[(3) \rightarrow(3)-5 \times 0]{(2) \rightarrow(2)-2^{0} 0}\left(\begin{array}{ccc:c}
1 & 0 & 2 & 0 \\
0 & 1 & -4 & 0 \\
0 & 2 & -8 & 0
\end{array}\right) \\
& \xrightarrow{(3) \rightarrow \text { (3)-(2) } \times 2}\left(\begin{array}{ccc:c}
{\left[\begin{array}{lll}
{[1]} \\
0 & 0 & 2
\end{array}\right.} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \vec{x}=\left(\begin{array}{c}
\text { free variables. } \\
4 x_{3} \\
x_{3}
\end{array}\right)=
\end{aligned}
$$

we get the basis $\left\{\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)\right\}$ for $\operatorname{Null}(A)$.

Suppose the p.v.f is $x_{3} \cdot\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)+x_{5} \cdot\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$
(-) $\operatorname{Null}(A)$ is surely spanned by. these vectors
(2) Sic we get sow echelon form. So the i-position in
the parametric meter form is equal x_{i} if x_{i} is a free variable. therefore it $\vec{x}=\overrightarrow{0}$ then $x_{i}=0$ for all free variables).

