Week 7 Thursday. Recall det (A) $A \in M_{3r3}(R)$ det (A) = Vol (< column vectors>) $\vec{a} = \int_{-\frac{1}{r}}^{\frac{1}{r}} \int_{-\frac{1}{r}}^{\frac{1}{r$

Q: How to desurise A if A is not injective not surjective. Ans: Rank.

Subspare

 $A:\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n}$

Colum Space Null et A Spare 01 (image) A (kernd) IR IR Col(A) Null(A)

Subspaces
$$\neq 1R^{2}$$
.
Def. A subset V of $1R^{2}$ is called a subspace
if
 $\bigcirc \vec{o} \in V$:
 $\bigcirc \vec{u}, \vec{v} \in V$ then $\vec{u} + \vec{v} \in V$: (closed under
 $\bigcirc \vec{u} \in V$, then $V \in R$ $c \cdot \vec{u} \in V$ coldition)
Prop. For any (incor transformation A, the Null(A)
and Col(A) are both subspaces of R^{2} .
Pf. Null(A) is clear a subspace using def of lincon
transformation.
Col(A): $\vec{o} = A(\vec{o}) V$
 $if \vec{u} = A(\vec{a}) \vec{v} = A(\vec{b})$ then
 $A(\vec{a} + \vec{b}) = A(\vec{a}) + A(\vec{b}) = \vec{u} + \vec{v}$
 $if \vec{u} = A(\vec{a})$ then
 $A(c \cdot \vec{a}) = c \cdot A(\vec{a}) = c \cdot \vec{u} V$ \square .
Def. (basis) If $V \in IR^{2}$ is a subspace of IR^{2} .
and $\vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{r} \in V$ satisfy
 \bigcirc span $c \vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{r} > = V$
 \bigcirc $\vec{v}_{1}, \dots, \vec{v}_{r}$ linearly independ.
then we call $[\vec{v}_{1}, \dots, \vec{v}_{r}]$ is a subspace by $[\vec{v}_{1}, \dots, \vec{v}_{r}]$
(we also say V is a subspace generated by $[\vec{v}_{1}, \dots, \vec{v}_{r}]$

Rmk: basis is not unique for a given V.
if
$$\overline{U}_{1}, \overline{U}_{2}$$
 is a basis
then $\overline{U}_{1}+\overline{U}_{2}, \overline{U}_{1}$ is also a basis.
 $\lambda_{1}(\overline{U}_{1}+\overline{U}_{2}) + \overline{\lambda_{2}}\overline{U}_{2} = \overline{\lambda_{1}}\overline{U}_{1} + (\overline{\lambda_{1}}+\overline{\lambda_{2}})\overline{U}_{2}$
Q: Is it possible to find two basis with different
number of vectors?
Ans: No. it is not possible.
Pf: Suppose $\overline{SE}_{1}, \dots, \overline{E}_{r}$ is one basis
 $\overline{Sd}_{1}, \dots, \overline{d}_{r}$ is another basis $r > t$.
then \overline{E}_{1} is a linear combination of $\overline{d}_{1}, \dots, \overline{d}_{r}$.
Swy $\overline{E}_{1} = \sum_{i} \sum_{j} \sum_{i} \overline{d}_{j}$
Swillerly $\overline{d}_{i} = \sum_{i} \beta_{ij} \overline{e}_{i}$
denote A to be the matrix with $A_{ij} = \alpha_{ij}$
 $\overline{B} - \dots = B_{ij} = \beta_{ij}$
then $\overline{A} \cdot B = Ir$
 $B \cdot A = It$
this is impossible if $r > t$.
Since $B \in M_{two}$ and echelon form of \overline{B} has fine variables.
 $\overline{J} \times_{i} \overline{v}$ set $B.\overline{x} = \overline{v}$ therefore $\overline{v} = A \cdot B.\overline{x} = Ir \cdot \overline{x} = \overline{x}$
contradiction.

D.

Det (dimension) If $V \subseteq IR^n$ is a subspace of IR^n and, any basis of V contains r vectors, then, we say r is the dimension of V.

eg. Null
$$A$$
).
 $A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 5 & 2 & 2 \end{pmatrix}$
 $A \cdot \vec{x} = \vec{0}$

the parametric metor form is equal x_i if x_i is a free variable. thesefore it $\vec{x} = \vec{o}$ then $x_i = o$ for all free variable(s).