Week 8 Thursolay.
Recall determinant from last time
Componte $\operatorname{det}(A)$ via $\{$ formula echelon form
$\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is row equivalen to I $\Leftrightarrow A$ is invertible.

$$
\operatorname{det}(A):=\left\{\begin{array}{l}
\sum_{\substack{i=i_{0} \\
1 \leq j \leq n}} a_{i j} \cdot m_{i j} \cdot(-1)^{i+j} \\
\sum_{\substack{j=j 0 \\
1 \leq i \leq n}} a_{i j} \cdot m_{i j} \cdot(-1)^{i+j} \\
\sum_{\sigma}\left(\prod_{1 \leq i \leq n} a_{i \sigma(i)}\right) \cdot \operatorname{sgn}(6)
\end{array}\right.
$$

where σ is bijection from $\{1,2, \cdots, n\}$ to $\{1,2, \cdots, n\}$ (ing and surg)

$$
\operatorname{sen}(\sigma):=\#\{(i, j) \mid i<j, \sigma(i)>\sigma(j)\}
$$

Cramer's Rale.
If $\operatorname{det}(A) \neq 0$, then A is invert 7 ib le.
Moreover, we can give a formula of A^{-1} in terms of abet (A). minors.
Define $\operatorname{adj}(A)$, adingente matrix of A, as

$$
[\operatorname{ad}(A)]_{i j}:=m_{j i} \cdot(-1)^{i+j}
$$

We compute $A \cdot \operatorname{adj}(A)$

$$
\begin{aligned}
{[A \cdot \operatorname{adj}(A)]_{i i} } & =\sum_{1 \leq k \leq n} a_{i k} \cdot[\operatorname{ad} ;(A)]_{k i} \\
& =\sum_{1 \leq k \leq i n} a_{i k} \cdot m_{i k} \cdot(-1)^{i+k} \\
& =\operatorname{det}(A) \\
{[A \cdot \operatorname{adj}(A)]_{i j} } & =\sum_{1 \leq k \leq n} a_{i k} \cdot m_{j k} \cdot(-1)^{j+k} \\
& =\operatorname{det}\left(\begin{array}{ll}
a_{i 1} \cdots \cdots & a_{i n} \\
a_{i 1} \ldots & a_{i n}
\end{array}\right) \leftarrow i \text { th won } \\
& =0
\end{aligned}
$$

$$
A \cdot \operatorname{adj}(A)=\operatorname{det}(A) \cdot I \quad A \cdot \frac{\operatorname{ag}(A)}{\operatorname{det}(A)}=I
$$

So $A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}$
ff. read in midterm.

$$
A=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & k & 0 \\
1 & 0 & 1
\end{array}\right) \quad \begin{aligned}
\operatorname{det}(A) & =k+0+0-0-6-4 k \\
& =-6-3 k
\end{aligned}
$$

$\operatorname{det}(A)=0 \Leftrightarrow A$ being non-imentible.

$$
\begin{gathered}
\Leftrightarrow 3 k=-6 \Leftrightarrow k=-2 . \\
\operatorname{adj}(A)=\left(\begin{array}{ccc}
k & -3 & -4 k \\
-2 & -3 & 8 \\
-k & 3 & k-6
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& -3=(-1)^{1+2} \cdot\left|\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right| \\
& -4 k=(-1)^{3+1}\left|\begin{array}{cc}
3 & 4 \\
k & 0
\end{array}\right|
\end{aligned}
$$

For $k=0$.

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}=\frac{1}{-6} \cdot\left(\begin{array}{ccc}
0 & -3 & 0 \\
-2 & -3 & 8 \\
0 & 3 & -6
\end{array}\right)
$$

eg. Determine the value of s. s.t.

$$
\left\{\begin{array}{c}
s x_{1}-2 x_{2}=1 \\
4 s x_{1}+4 s x_{2}=2
\end{array}\right.
$$

has a unique solution.

$$
\left.A=\left(\begin{array}{cc}
s & -2 \\
4 s & 4 s
\end{array}\right) \quad \text { linear system } \quad \begin{array}{l}
1 \\
2
\end{array}\right)
$$

A is row equivalent to $I \Leftrightarrow A$ is invertible II

$$
\Leftrightarrow \operatorname{det}(A) \neq 0
$$

\exists ! solution for $A \vec{x}=\vec{b}$ for eng $\vec{b} \in \mathbb{R}^{n}$.

$$
\operatorname{det}(A)=4 s^{2}+8 s=4 s \cdot(s+2) \neq 0 \Leftrightarrow \quad s \neq 0,-2 .
$$

Important Property of dec:
$\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ for square matrix pf. Recall that. row operations can be described by matrix multiplications.

1) swap $i j$ rows then.

$$
\begin{aligned}
& i \rightarrow \\
& j \rightarrow\left.\begin{array}{ccc}
1 & \stackrel{\downarrow}{l} & \downarrow \\
& 0 & 1 \\
& 1 & \\
& 0 & \\
& 11 & \\
R_{i j}
\end{array}\right) \cdot A \quad \text { so } \operatorname{det}\left(R_{i j} \cdot A\right)=\operatorname{det}\left(R_{i j}\right) \cdot \operatorname{det}(A) \\
& \operatorname{det}\left(R_{i j}\right)=-1
\end{aligned}
$$

2) replace row i with row $+\lambda$ row.

$$
\operatorname{det}\left(R_{i j \lambda}\right)=1 \text { since it is }
$$ upper /loner triangular

3) scalar multiplication for row i

$$
R_{i \lambda}=\left(\begin{array}{llll}
1 & \ddots & & \\
& \ddots & & \\
& & \lambda & \\
& & & 1
\end{array}\right) \quad \operatorname{det}\left(R_{i \lambda} \lambda\right)=\lambda \text {. }
$$

$\Rightarrow \operatorname{det}\left(R_{i \lambda} A\right)=\operatorname{det}\left(R_{i \lambda}\right) \cdot \operatorname{det}(A)$. reduced echelon form Now $\operatorname{det}(A B)=\operatorname{det}(\underbrace{R_{1} R_{2} \cdots R_{e} \cdot A_{0}}_{A^{\prime \prime}} \cdot B)$

$$
\begin{aligned}
& =\operatorname{det}\left(R_{1}\right) \cdot \operatorname{det}\left(R_{2} \cdots R_{e} \cdot A_{0} \cdot B\right) \\
& =\operatorname{det}\left(R_{1}\right) \cdots \operatorname{det}\left(R_{e}\right) \cdot \operatorname{det}\left(A_{0} \cdot B\right)
\end{aligned}
$$

if A is invertible. then $A_{0}=I$.
so $\operatorname{det}(A B)=\operatorname{det}\left(R_{1}\right) \cdots \operatorname{det}\left(R_{c}\right) \cdot \operatorname{det}(B)$

$$
=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

if A is not-ivertible then $A_{0} \cdot B$ is not invertible

$$
\begin{aligned}
& \begin{array}{rlll}
R_{i j \lambda} & \underset{j}{ } & \rightarrow\left(\begin{array}{llll}
1 & & \downarrow_{i} & \\
& & \downarrow \\
& 1 & & \\
& & \ddots & \\
& & & \lambda \\
& & & \\
& & &
\end{array}\right) .
\end{array} \\
& \Rightarrow \operatorname{det}\left(R_{i j \lambda} A\right)=\operatorname{det}\left(R_{i j \lambda}\right) \cdot \operatorname{det}(A)
\end{aligned}
$$

so $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)=0$

Vector Space
the most common examples are \mathbb{R}^{n} over R
A veetor space V^{2} is a set with (t, \cdot) st.

1. $\forall u, v \in V, u+v \in V$, c. $u \in V$;
2. $(u+v)+w=u+(v+w)$
3. $u+v=v+u$
4. $c(u+v)=c u+c v \quad \forall c, d \in \mathbb{R}$

$$
(c+d) u=c u+d u
$$

5. ヨo st. $0+u=u$
6. $\quad 1 \cdot u=u$
7. $\forall u \in V \exists!(-u)$ s.t $u+(-u)=0$
8. $\quad c \cdot(d u)=(c d) \cdot u \quad \forall c, d \in \mathbb{R} \quad u \in V$

Ex: $\quad V=M_{m \times n}(\mathbb{R})$. (matrix addition. scalar multiplation) sane with $\mathbb{R}^{m \times n}$

