Week 9 Tuesday
Recall last time
Def. vector space (over $\mathbb{R})(V,+, \cdot)$

1. + , are closed in V.

$$
+: V \times V \longrightarrow V
$$

$$
\cdot: \mathbb{R} \times V \longrightarrow V
$$

2. $\forall \vec{u}, \vec{v} \in V, \vec{u}+\vec{v}=\vec{v}+\vec{u}$
3. \exists ! $\vec{o} \in V$ st. $\forall \vec{u} \in V \quad \vec{u}+\vec{o}=\vec{u}$
4. $\forall \vec{u} \in V \quad \exists!\vec{v}$ sit $\vec{u}+\vec{v}=\overrightarrow{0}$ (denote this \vec{v} by $-\vec{u})$
5. $\forall \vec{u}, \vec{v}, \vec{w} \in V \quad(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
6. $\forall \vec{u} \quad \vec{v} \in V \quad \forall c \in \mathbb{R} . c \cdot(\vec{u}+\vec{v})=c \cdot \vec{u}+c \cdot \vec{v}$
$\forall c \cdot d \in \mathbb{R} \quad(c+d) \cdot \vec{u}=c \cdot \vec{u}+d \cdot \vec{u}$
7. $\forall \vec{u} \in V \quad \forall c \cdot d \in \mathbb{R}$ $(c \cdot d) \cdot \vec{u}=c \cdot(d \cdot \vec{u})$
8. $\forall \vec{u} \in V \quad 1 \cdot \vec{u}=\vec{u}$.

Examples:
(0) $V=\mathbb{R}^{n} \quad t$ vector addition
-: scalar multipliation for vectors.
(1) $V=M_{m \times n}(\mathbb{R})+$ matrix adelition

- scalar multiplication for matrix
(2) $V=\mathbb{C}:=\left\{a+b_{i} \mid a, b \in \mathbb{R}\right\} \quad i$ is $\sqrt{-1}$.
(7): $\left(a_{1}+b_{1} i\right) \oplus\left(a_{2}+b_{2} i\right)=a_{1}+a_{2}+\left(b_{1}+b_{2}\right) \cdot i$
$\odot: c \odot\left(a+b_{i}\right)=c \cdot a+c \cdot b_{i}$
V is "the same" with \mathbb{R}^{2}

$$
\begin{aligned}
& \mathbb{C} \stackrel{f}{\longleftrightarrow} \mathbb{R}^{2} \\
& a+b i \\
& \binom{a}{b} \\
& f \text { respects }+ \text { and. } \\
& \text { (1) } f(a+b)=f(a)+f(b) \\
& \text { (2) } c \cdot f(a)=f(c \cdot a) \\
& \begin{array}{c}
a_{1}+b_{1} i \oplus a_{2}+b_{2 i}
\end{array} \quad\binom{a_{1}}{b_{1}}+\binom{a_{2}}{b_{2}}=\binom{a_{1}+a_{2}}{b_{1}+b_{2}} \\
& a_{1}+a_{2}+\left(b_{1}+b_{2}\right) i
\end{aligned}
$$

\mathbb{C} is isomorphic to \mathbb{R}^{2} as a. v.s. (over $\left.\mathbb{R}\right)$.
Def. Given V, W two v.s. $/ \mathbb{R}$. we say V is isomophis to w if \exists a bijection $f: v \rightarrow W$ that preserves + ad

$$
\text { Fix }{ }^{n}
$$

(3) $V=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{i} \in \mathbb{R}\right\}$. + , uskall operation
(4) $V=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \mid a_{i} \in \mathbb{R}, n \in \mathbb{Z}_{\geqslant 0}\right\}$
t, usually operation.
still a vector space.
(5). $V=\{f:[0,1] \rightarrow \mathbb{R}$ continuous $\} \lim _{x \rightarrow a} f(x)=f(a)$

$$
\begin{aligned}
& f \oplus g: \stackrel{[0,1]}{x} \longrightarrow \mathbb{R}(x)+g(x) \\
& \lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
\end{aligned}
$$

sum of continuous functions are still continuous.

$$
c \odot f: x \longrightarrow c \cdot f(x)
$$

Fix W a r.s ower \mathbb{R}.
(6) $V=\left\{\right.$ linear transformutions $\left.T: W \rightarrow \mathbb{R}^{n}\right\}$
© :

$$
\begin{aligned}
T_{1}, T_{2}: W & \longrightarrow \mathbb{R}^{n} \\
T_{1} \oplus T_{2}: w & \longrightarrow \mathbb{R}^{n} \\
\vec{w} & \longrightarrow T_{1}(\stackrel{\rightharpoonup}{w})+T_{2}(\stackrel{\rightharpoonup}{w})
\end{aligned}
$$

$\odot: c \odot T: \vec{w} \longrightarrow c \cdot T(\vec{w})$
Check thet $P=\frac{T_{1} \Theta T_{2}}{}$ is still linear transformetion:

$$
\begin{aligned}
& P\left(\vec{w}_{1}+\vec{w}_{2}\right)=T_{1}\left(\vec{w}_{1}+\vec{w}_{2}\right)+T_{2}\left(\vec{w}_{1}+\vec{w}_{2}\right)= \\
= & T_{1}\left(\vec{w}_{1}\right)+T_{1}\left(\vec{w}_{2}\right) \\
& +\frac{T_{2}\left(\vec{w}_{1}\right)+T_{2}\left(\vec{w}_{2}\right)}{}
\end{aligned}
$$

sinilarly for $C P\left(\vec{w}_{1}\right)=P\left(c \vec{w}_{1}\right)$
(7) $V=\left\{\right.$ upper/lower Trianguler matrix $\left.\in M_{n \times n}(\mathbb{R})\right\}$
$V=\left\{\right.$ diagonal metrix $\left.\in M_{n \times n}(\mathbb{R})\right\}$

+ . matrix operation.
Subspace:
Def. V is r.s/ $\mathbb{R} . H \subseteq V$ is a subset s.t.
(1) $\overrightarrow{0} \in H$
(2) H is closed under ooldition and scaler muttiplicetion.

Romk. H is iust a subset and ($H,+$, ,) forms a v.s.
eg. Def (span). $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \quad \vec{v}_{i} \in V$.

$$
\operatorname{span}(s):=\left\{\alpha_{1} \vec{v}_{1}+\cdots+\alpha_{n} \vec{v}_{n} \mid \alpha_{i} \in \mathbb{R}\right\}
$$

is a subspence of V.
eg. Def (linear transformation) $T: V \longrightarrow W$
(Q) $T(u+v)=T(n)+T(v)$
(2) $T(c n)=c \cdot T(n)$
then T is linear transformation.
Kernel of $T:=\{\vec{v} \in V \mid T(\vec{v})=\overrightarrow{0}\} \leq V$
($\operatorname{NulC}(T)$) if $T\left(\vec{v}_{1}\right)=T\left(\vec{v}_{2}\right)=\overrightarrow{0}$ then

$$
\begin{aligned}
& T\left(\vec{v}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)=\overrightarrow{0} \\
& \Rightarrow \quad \vec{v}_{1}+\vec{v}_{2} \in \operatorname{Nu} l(T) .
\end{aligned}
$$

Range of $T:=\{T(\vec{v}) \in W \mid \vec{v} \in V\} \leq W$
$(\operatorname{Cos}(T))$ if $T\left(\vec{v}_{1}\right)=\vec{w}_{1} \quad T\left(\vec{v}_{2}\right)=\vec{w}_{2}$

$$
T\left(\vec{v}_{1}+\vec{v}_{2}\right)=\vec{v}_{1}+\vec{w}_{2} \Rightarrow \vec{w}_{1}+\vec{w}_{2} \in \operatorname{Col}(\overline{1}) .
$$

if $T(\vec{v})=\vec{\omega}$ then $T(\vec{v}+\vec{a})=\vec{w} \quad \forall \vec{a} \in \operatorname{Kernd}(T)$.

$$
\left\{\left.\left(\begin{array}{ccc}
1 & * & * * \\
1 & { }^{*} & * \\
0 & 1 & * \\
0 & & 1
\end{array}\right) \right\rvert\, * \in \mathbb{R}\right\} \quad\left\{a x^{2}+b x \mid a, b \in \mathbb{R}\right\}
$$

$[f(x):[0,1] \rightarrow \mathbb{R}$ continous $\quad f(0)=f(1)=13 x$

