Week 9 Thursday.
Recall vector spare

$$
\text { 1. } V=\left\{x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \mid a_{i} \in \mathbb{R}\right\} x
$$

$V=\{f(x):[0,1] \rightarrow \mathbb{R}$ continuous $\mid f(0)+3 f(1)=0\}$

$$
\begin{aligned}
& (f+g)(0)+3(f+g)(1)=f(0)+3 f(1)+g(0)+3 g(1)=0 \\
& f(0)-3 f(1)^{2}=0 \\
& V=\left\{\left.\left(\begin{array}{c}
2 s-2 t \\
r+s-2 t \\
4 r+s+1 \\
3 r-s-2 t
\end{array}\right) \right\rvert\, r, s, t, \in \mathbb{R}\right\} \\
& \text { (cf) }(0)-3 \cdot(c f)(1)^{2} \\
& =c \cdot f(0)-3 \cdot c^{2} \cdot f(1)^{2} \neq 0 \\
& f(0)-2 \cdot f(1)^{2}=0 \\
& (f+g)^{2}(0)=(f(0)+g(0))^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =f(0)+g^{2}(0)+2 f(0) g(0) \\
& \text { easier example: }
\end{aligned}
$$

$V=\left\{r \cdot\binom{1}{0}+\binom{0}{1}\right\} x$ because $\binom{0}{0}$ is not in V and. $c \cdot\binom{r}{1}=\binom{c r}{c} \quad c \neq 1$

$$
V=\left\{(r+1) \cdot\binom{1}{0}\right\}=V=\left\{r\binom{1}{0}\right\}
$$

Linear Independence $\checkmark \quad \vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ is linearly indepent:
if $\quad \sum \alpha_{i} \cdot \vec{v}_{i}=0 \Rightarrow \alpha_{i}=0 \not \forall_{i}$.

Basis. $V \quad\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ forms a basis it
(1) $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}=V$
(2) if $\vec{v}_{1}, \cdots, \vec{v}_{n}$ are linearly independent.

Proposition. Fix V any basis contains the sane rub er of vectors.

Pt. If $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ is a basis for V

$$
\left\{\vec{d}_{1}, \ldots, \vec{d}_{m}\right\}
$$

and $m>n$. then. $\vec{e}_{i}=\sum_{j=1}^{m} \alpha_{i j} \cdot \vec{d}_{j} \quad$ so. we have

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & & \vdots \\
\alpha_{n 1} & \cdots & \vdots \\
\alpha_{n n}
\end{array}\right) \quad A \cdot\left(\begin{array}{c}
\vec{d}_{1} \\
\vdots \\
\vec{d}_{m}
\end{array}\right)=\left(\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vdots \\
\vec{e}_{n}
\end{array}\right) .
$$

A has more colons then rows. 50

$$
A \cdot \vec{x}=\overrightarrow{0}
$$

has nontrivial solutions, say \vec{x}_{0} is one such solution.
then.

$$
A \cdot\left(\begin{array}{c}
\beta_{1} \vec{d}_{1} \\
\beta_{2} \vec{d}_{2} \\
\vdots \\
0
\end{array}\right)=\overrightarrow{0} \quad \Rightarrow \quad \begin{array}{r}
\beta_{1} \vec{d}_{1}+\cdots
\end{array} \beta_{m} \vec{d}_{m}=\overrightarrow{0}
$$

where $\beta_{1} \ldots \beta_{m}$ are not all 0 .
Contradicts with $\left\{\vec{d}_{1}, \cdots, \vec{d}_{m}\right\}$ being a basis.

Examples for basis.
(0) \mathbb{R}^{n} : standard basis $\vec{e}_{i}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ i\end{array}\right) \leftarrow i$ th position. $i=1, \cdots, n$.

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} \cdot\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+x_{2} \cdot\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{n} \cdot\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& \text { (1) } M_{n \times m}(\mathbb{R}): \quad \delta_{i j}=\left(\begin{array}{ccc}
0 & \begin{array}{c}
w \\
\vdots \\
0
\end{array} & 0 \\
-0 & 0 & 0
\end{array}\right) \quad \text { for } 1 \leq i \leq n \\
& 1 \leq j \leq m . \\
& A=\left(\begin{array}{ccc}
\alpha_{11} \ldots & \alpha_{1 m} \\
\vdots & \vdots \\
\alpha_{n 1} & -\alpha_{n m}
\end{array}\right)=\sum_{i, j} \alpha_{i j} \cdot \delta_{i j}
\end{aligned}
$$

(6) $V=\left\{\right.$ set of linear transformations: $\left.\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right\}$. $\left\{\vec{e}_{i}\right\} \quad\left\{\vec{d}_{j}\right\}$

$$
\left\{\begin{array}{l}
\widetilde{\delta}_{i j}\left(\vec{e}_{i}\right)=\vec{e}_{j} \\
\widetilde{\delta}_{i j}\left(\vec{e}_{k}\right)=\overrightarrow{0} \quad \text { for } k \neq i \\
T\left(\vec{e}_{i}\right)=\sum_{1 \leq j \leq m} \alpha_{i j} \vec{d}_{j} \quad T=\sum \alpha_{i j} \cdot \tilde{\delta}_{i j}
\end{array}\right.
$$

Check this.
Charge of Basis.

$$
\vec{e}_{1} \quad \vec{e}_{2}
$$

$V=\mathbb{R}^{2} \quad\left\{\binom{1}{0},\binom{6}{1}\right\}$ is a basis
$\left\{\begin{array}{l}\vec{d}_{1} \\ \left.\binom{1}{0},\left(\begin{array}{l}\overrightarrow{d_{2}} \\ 1 \\ 1\end{array}\right)\right\} \text { is a basis }, ~\end{array}\right.$

$$
\begin{cases}\vec{d}_{1}=\vec{e}_{1} & \text { so. } \\
\vec{d}_{2}=\vec{e}_{1}+\vec{e}_{2} & \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{\vec{e}_{1}}{\vec{e}_{2}}=\binom{\vec{d}_{1}}{\vec{d}_{2}} \\
A & \end{cases}
$$

$T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& \vec{e}_{1} \longrightarrow 2 \vec{e}_{1}+3 \vec{e}_{2} \\
& \vec{e}_{2} \longrightarrow 3 \vec{e}_{1}+2 \vec{e}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{d}_{1}=\vec{e}_{1} \longrightarrow & 2 \vec{e}_{1}+3 \vec{e}_{2} \\
& =-\vec{d}_{1}+3 \vec{d}_{2} \\
\vec{d}_{2}=\vec{e}_{1}+\vec{e}_{2} \longrightarrow & 2 \vec{e}_{1}+3 \vec{e}_{2} \\
& +3 \vec{e}_{1}+2 \vec{e}_{2} \\
& =5 \vec{e}_{1}+5 \vec{e}_{2} \\
& =5 \vec{d}_{2}
\end{aligned}
$$

Matrix for T under $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is

$$
T_{1}=\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)\binom{\vec{e}_{1}}{\vec{e}_{2}}=\binom{T\left(\vec{e}_{1}\right)}{T\left(\vec{e}_{2}\right)}
$$

under $\left\{d_{1}, d_{2}\right\}$ is

$$
T_{2}=\left(\begin{array}{cc}
-1 & 3 \\
0 & 5
\end{array}\right)\binom{\vec{d}_{1}}{\vec{d}_{2}}=\binom{T\left(\vec{d}_{1}\right)}{T\left(\vec{d}_{2}\right)}
$$

Compute. A for given basis?
One way is to solve. $M \cdot \vec{x}=\overrightarrow{d_{j}}$ for each j with $M=\underset{\vec{e}_{1} \cdots \vec{e}_{n}}{\left(\int_{\vec{e}}\right)}$
T_{0} save a little bit time.

