Week 11 Thurs day

$$
5.1,5.2,5.3
$$

Example:

Matrix for T
under $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& T \cdot\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& x_{1} \cdot \vec{e}_{1}+x_{2} \cdot \vec{e}_{2}
\end{aligned}
$$

$$
T \cdot \vec{e}_{1}=\vec{e}_{1} \quad A \cdot\binom{x_{1}}{0}=\binom{x_{1}}{0}
$$

Def: T : linear transformation. $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
$T \vec{x}=\lambda \cdot \vec{x}$ for some $\vec{x} \neq \overrightarrow{0}$, then we say λ is an eigenvalue for $T . \vec{x}$ is an eigenvector associated to λ.
$T=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \quad \lambda=1$ is an eigenvalue.
To find all eigenvectors associated t_{0}

$$
\lambda=1 .
$$

$$
\begin{aligned}
T \cdot\binom{x_{1}}{x_{2}}=\binom{x_{1}}{x_{2}} & \Leftrightarrow(T-I) \cdot\binom{x_{1}}{x_{2}}=\overrightarrow{0} \\
& \Leftrightarrow\left(\begin{array}{cc}
0 & \boxed{2} \\
0 & 0
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=0 \\
& \Leftrightarrow \quad \vec{x}=\binom{x_{1}}{0}=x_{1} \cdot\binom{1}{0}
\end{aligned}
$$

To find all eigenvalues.

$$
T \cdot\binom{x_{1}}{x_{2}}=\lambda \cdot\binom{x_{1}}{x_{2}} \Leftrightarrow(T-\lambda \cdot I) \cdot\binom{x_{1}}{x_{2}}=0
$$

has non-zero solution has non-zevo. Solution

$$
\Leftrightarrow \quad T-\lambda I=\left(\begin{array}{cc}
1-\lambda & 2 \\
0 & 1-\lambda
\end{array}\right)
$$

is non invertible.
*: A is non invertible $\Leftrightarrow \quad \operatorname{Null}(A) \neq\{\overrightarrow{0}\}$

$$
\begin{aligned}
& \Leftrightarrow \quad \cot (A) \neq \mathbb{R}^{n} \\
& \Leftrightarrow \quad \operatorname{det}(A)=0
\end{aligned}
$$

$$
T \cdot \vec{x}=0 \cdot \vec{x}=\overrightarrow{0}
$$

$\Leftrightarrow \lambda$ is an eigenzalue of A.

$$
\begin{aligned}
\Leftrightarrow & (1-\lambda)^{2}-0=0 \\
& (\lambda-1)^{2}=0 \Leftrightarrow \lambda=1
\end{aligned}
$$

Example:

Matrix for T weer $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

1). Find all eigenvalues.
characteris tic

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=\underline{\lambda}^{2}-1=0 \quad \text { polynomial for }
$$

$$
\lambda=1 \text { or }-1
$$

2) Find all eigenvectors. $\{\vec{x} \mid T \vec{x}=\lambda \vec{x}\}$ eigenspace.

$$
\begin{aligned}
& \lambda=1 \text { Solve } A \vec{x}=\vec{x} \Leftrightarrow\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \\
& \Leftrightarrow\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \\
& \vec{x}=\binom{x_{2}}{x_{2}}=x_{2} \cdot\binom{1}{1} \\
& \lambda=-1 \quad A \vec{x}=-\vec{x} \Leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
\lambda
\end{array}\right)\binom{x_{1}}{x_{2}}=0
\end{aligned}
$$

$$
\vec{x}=\binom{-x_{2}}{x_{2}}=x_{2} \cdot\binom{-1}{1}
$$

3). Final matrix for T under the basis

$$
\begin{aligned}
& \vec{d}_{1}\binom{1}{1} \text { and }\binom{-1}{1} \\
& A^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

characteristic poly is: $\operatorname{det}\left(A^{\prime}-\lambda I\right)$

$$
=\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right|=\lambda^{2}-1
$$

a basis for \mathbb{R}^{n}
Def. T is diagonalisable it $\exists_{S=}=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ st.
matrix for T under S is diagonable matrix.
\Leftrightarrow If all eigenvectors span \mathbb{R}^{n}. $\lambda_{1} \quad \lambda_{2}$

$$
\begin{gathered}
T(\vec{x})=\lambda_{1} \vec{x} \\
T(\vec{x})=\lambda_{2} \vec{x} \\
\left\{\vec{x}_{x_{1}}, \ldots, \vec{x}_{k}, \vec{y}_{1}, \ldots, \vec{y}_{3}\right\} \\
\underbrace{\sum \alpha_{i} \vec{x}_{i}}_{V_{\lambda_{1}}}+\underbrace{\beta_{i}=0}_{V_{\lambda_{2}} \cap V_{\lambda_{1}}=\overrightarrow{0}=\overrightarrow{\beta_{i}} \sum_{i} \Rightarrow \vec{y}_{i}=0} \begin{array}{l}
\alpha_{i}=0
\end{array}
\end{gathered}
$$

Example:

$$
\text { matrix for } T\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1). Find all eigenvalues

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
\cos \theta-\lambda & -\sin \theta & 0 \\
\sin \theta & \cos \theta-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right| \\
&=(1-\lambda) \cdot\left|\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array}\right| \\
&=(1-\lambda) \cdot\left[(\cos \theta-\lambda)^{2}+\sin ^{2} \theta\right]=0 \\
& \begin{aligned}
\sin \theta=0 \\
\cos \theta-\lambda=0
\end{aligned} \\
& \begin{aligned}
& \cos \theta= \pm 1 \quad \lambda=\cos \theta . \\
& \cos \theta \Rightarrow \theta=0 \\
& \cos \theta=-1 \Rightarrow \theta=\pi
\end{aligned}
\end{aligned}
$$

If $\theta=0$ or π then $\lambda=1$ or $\cos \theta$
If $\theta \neq 0, \pi \quad$ then $\lambda=1$
2) Detemine eigenzectors:

$$
\lambda=1 . \quad A \cdot \vec{x}=\vec{x} \Leftrightarrow\left(\begin{array}{ccc}
\cos \theta-1 & -\sin \theta & 0 \\
\sin \theta & \cos \theta-1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

since $(\cos \theta-1)^{2}+\sin \theta^{2}>0$ if $\theta \neq 0$ or π.

$$
\vec{x}=\left(\begin{array}{c}
0 \\
0 \\
x_{3}
\end{array}\right)=x_{3} \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

if $\theta=\pi . \quad(\theta=0$ is too boring)

$$
\left.\begin{array}{l}
\lambda=\cos \theta=-1 \\
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 12
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0 \\
A^{\prime}=A=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
0
\end{array}\right)=x_{1} \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+x_{2} \cdot\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \\
-1
\end{array}\right)
$$

Exaple: $\quad A=\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)$

1) Eigenzalue
2) Eigenvertor
3) Matrix A^{\prime}
1).

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right|= & \lambda^{2}-10 \lambda+25-9= \\
& \lambda^{2}-10 \lambda+16 \\
= & (\lambda-2)(\lambda-8)=0
\end{aligned}
$$

$$
\lambda=2 \text { or } 8
$$

2)

$$
\begin{aligned}
& \lambda=2 .\left(\begin{array}{cc}
3 & 3 \\
3 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\overrightarrow{0} \quad \vec{x}=x_{2}\binom{1}{-1} \\
& \lambda=8 \quad\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \quad \vec{x}=x_{2}\binom{1}{1}
\end{aligned}
$$

3)

$$
A^{\prime}=\left(\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right)
$$

