Week 14 Tuesday.
Recall. a basis's for V is

1) linearly independent
2) $\quad \operatorname{span}(S)=V$

Q: Given $V, S=\left\langle\vec{e}_{1}, \cdots, \vec{e}_{n}\right\rangle . \quad \vec{b} \in V$.

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
\underset{\sim}{\downarrow} & \downarrow & \cdots & \downarrow \\
\vec{e}_{1} & \vec{e}_{2} & \underset{\vec{e}_{n}}{\downarrow}
\end{array}\right) \begin{array}{c}
A \cdot \vec{x}=\vec{b} . \\
\text { coefficients. }
\end{array} \\
& V=\mathbb{R}^{n} \quad S=\left\langle\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
1
\end{array}\right), \cdots\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)\right\rangle . \quad \vec{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \in \mathbb{R}^{n} . \\
& \vec{x}=\vec{b} .
\end{aligned}
$$

Orthonormal basis for \mathbb{R}^{n}.

$$
S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}
$$

S is orthonormal basis if

1) S is basis
2) $\vec{v}_{i} \cdot \vec{v}_{j}=0 \quad\left(\Leftrightarrow \vec{v}_{i} \perp \vec{v}_{j}\right)$ if $i \neq j$
3) $\vec{v}_{i} \cdot \vec{v}_{i}=1$

Suppose S is orthonormal and $\vec{b}=\sum_{i} b_{i} \cdot \vec{v}_{i}$

$$
\vec{b} \cdot \vec{v}_{j}=\left(\sum_{i=1}^{n} b_{i} \vec{v}_{i}\right) \cdot \vec{v}_{j}=\sum_{i=1}^{n} b_{i} \cdot \vec{v}_{i} \cdot \vec{v}_{j}=b_{j} \vec{v}_{j} \cdot \vec{v}_{j}=b_{j} \cdot\left\|v_{j}\right\|^{2}
$$

Now. $C=\left(\begin{array}{cc}\longrightarrow & \vec{i}_{2} \\ \vdots & \vec{i}_{n}\end{array}\right)$

$$
C \cdot C^{T}=\left(\begin{array}{cccc}
\vec{v}_{1} \cdot \vec{v}_{1} & \vec{\imath}_{1} \cdot \vec{v}_{2} & \ldots & \vec{v}_{i} \cdot \vec{v}_{n} \\
\vdots & \ddots & \vec{v}_{i} \cdot \vec{v}_{j} & \cdot \\
\vdots \\
\vec{v}_{n} \cdot \vec{v}_{1} & \cdots & \cdots & \vdots \\
\vec{v}_{n} & \vec{v}_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & \vec{v}_{1} & \vec{v}_{2} & \\
0 & 1 & 0 & \cdots \\
\cdots & 1 & 0 \\
0 & & & 1
\end{array}\right)=I
$$

Def (Orthogonal Matrix) If $A \in M_{n \times n}(\mathbb{R})$ we say A is an orthogonal matrix it $A \cdot A^{\top}=I$.

$$
A \cdot \vec{x}=\vec{b} \quad \Leftrightarrow \quad \vec{x}=A^{-1} \vec{b}=A^{\top} \cdot \vec{b}
$$

Computational Task:
Given $\vec{x}_{1}, \vec{x}_{2}, \ldots \vec{x}_{n} \in \mathbb{R}^{n}$ (not necessarily ortwnormal). construe an orthonoul basis $\vec{v}_{1}, \ldots \vec{v}_{n}$?

$$
\begin{aligned}
& \text { eg. } V=\mathbb{R}^{n} \\
& \vec{x}_{1}=\binom{1}{2} \quad \vec{x}_{2}=\binom{2}{3} \\
& \frac{\overrightarrow{x_{1}}}{\left\|\vec{x}_{1}\right\|}: \text { length } 1, \text { unit vector } \\
& \vec{x}_{2} \cdot \vec{x}_{1}=\left\|\vec{x}_{2}\right\| \cdot\left\|\overrightarrow{x_{1}}\right\| \cdot \cos \theta
\end{aligned}
$$

\vec{b} is the priection of \vec{x}_{2} along \vec{x}_{1}.

$$
\begin{aligned}
& \|\vec{b}\|=\left\|\vec{x}_{2}\right\| \cdot \cos \theta=\frac{\vec{x}_{2} \cdot \vec{x}_{1}}{\left\|\vec{x}_{1}\right\|} \\
& \begin{aligned}
\vec{b} & =\|\vec{b}\| \cdot \frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}=\left(\frac{\vec{x}_{2} \cdot \vec{x}_{1}}{\left\|\vec{x}_{1}\right\| \cdot\left\|\vec{x}_{1}\right\|}\right) \vec{x}_{1} \\
& =\left(\frac{\overrightarrow{x_{2}} \cdot \vec{x}_{1}}{\vec{x}_{1} \cdot \vec{x}_{1}}\right) \cdot \vec{x}_{1} \\
\vec{a} & =\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{x}_{1}}{\vec{x}_{1} \cdot \vec{x}_{1}}\right) \vec{x}_{1} \perp \vec{x}_{1} .
\end{aligned}
\end{aligned}
$$

Plug in: $\vec{b}=\left(\frac{8}{5}\right) \cdot\binom{1}{2}=\binom{8 / 5}{16 / 5}$

$$
\begin{aligned}
& \vec{x}_{2} \cdot \vec{x}_{1}=\binom{1}{2} \cdot\binom{2}{3}=1 \times 2+2 \times 3=8 \\
& \vec{x}_{1} \cdot \vec{x}_{1}=\binom{1}{2} \cdot\binom{1}{2}=5 \\
& \vec{a}=\binom{2}{3}-\binom{8 / 5}{16 / 5}=\binom{2 / 5}{-1 / 5} \quad \| \vec{a} 11=\frac{1}{\sqrt{5}} \\
& \vec{x}_{1}=\binom{1}{2} \quad \vec{w}_{1}=\frac{1}{\sqrt{5}} \cdot\binom{1}{2}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}} \\
& \vec{a}=\binom{2 / 5}{-1 / 5} \quad \vec{u}_{2}=\binom{2 / \sqrt{5}}{-1 / \sqrt{5}}
\end{aligned}
$$

$\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$ is an orthonormal basis.
$\vec{r}=\binom{21}{13}$ what is coefficients of \vec{r} in $\left\{\vec{n}_{1}, \vec{r}_{2}\right\}$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\overrightarrow{w_{1}} & \frac{\overrightarrow{w_{2}}}{1 / \sqrt{5}} \\
2 / \sqrt{5} & -1 / \sqrt{5}
\end{array}\right) \\
& A \cdot \vec{x}=\vec{\gamma} \quad \vec{x}=A^{-1} \vec{r} \\
& =A^{\top} \cdot \vec{r} \\
& A^{\top}=\binom{\longrightarrow \vec{w}_{1}}{\longrightarrow \vec{w}_{2}} \\
& \gamma_{1}=\vec{v}_{1} \cdot \vec{r}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}} \cdot\binom{21}{13}=\frac{47}{\sqrt{5}} \\
& \gamma_{2}=\vec{v}_{2} \cdot \vec{\gamma}=\binom{2 / \sqrt{5}}{-1 / \sqrt{5}} \cdot\binom{21}{13}=29 / \sqrt{5}
\end{aligned}
$$

In general, this is called Gram-Schnidt process

$$
\begin{aligned}
& \vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{n} \in \mathbb{R}^{m} \cdot(m>n) \\
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \vec{v}_{1}}\right) \overrightarrow{v_{1}} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\overrightarrow{x_{3}} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \vec{v}_{1}} \cdot \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \cdot \vec{v}_{2} \\
& \vdots \\
& \vec{v}_{n}=\vec{x}_{n}-\frac{\vec{x}_{n} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \cdot \overrightarrow{v_{1}}-\cdots \\
&
\end{aligned}
$$

Normalize each \vec{v}_{i} by $\frac{\vec{v}_{i}}{\left\|\vec{v}_{i}\right\|}$, we get orthonormal basis.

Consequence of Gram -Schmidt.: QR factorization
matrix
eq. $\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)=\left(\begin{array}{cc}1 / \sqrt{5} & 2 / \sqrt{5} \\ 2 / \sqrt{5} & -1 / \sqrt{5}\end{array}\right) \cdot\left(\begin{array}{cc}\sqrt{5} & 8 / \sqrt{5} \\ 0 & \frac{1}{\sqrt{5}}\end{array}\right)$
Ex. $\quad \mathbb{R}^{4}$

$$
\vec{x}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \vec{x}_{2}=\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right) \quad \vec{x}_{3}=\left(\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right)
$$

Gram -Schmidt process:

$$
\begin{aligned}
\vec{x}_{3} \cdot \vec{v}_{2} & =-1-6+\frac{1}{2} \\
& =-13 / 2
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\vec{v}_{1} & =\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \cdot \vec{v}_{1} \quad \vec{v}_{2} \cdot \vec{v}_{2}=1 / 4+4+1+1 / 4 \\
& =\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 / 2 \\
-2 \\
1 \\
1 / 2
\end{array}\right) \\
\vec{v}_{3} & =\vec{x}_{3}-\frac{\overrightarrow{x_{3}} \cdot \vec{v}_{1}}{\overrightarrow{v_{1}} \cdot \vec{v}_{1}} \cdot \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \cdot \overrightarrow{v_{2}} \\
& =\left(\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right)-\frac{3}{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)-\frac{-13 / 2}{11 / 2} \cdot\left(\begin{array}{c}
-1 / 2 \\
-2 \\
1 \\
1 / 2
\end{array}\right) \\
& \cdots\left(\begin{array}{c}
2-3 / 2-\frac{13}{22} \\
3-26 / 11 \\
13 / 11 \\
1-3 / 2
\end{array}\right)=\frac{13}{22}
\end{array}\right)=\left(\begin{array}{c}
-1 / 11 \\
7 / 11 \\
13 / 11 \\
1 / 11
\end{array}\right) .
$$

