Week 15 Tuesday.
Recall that.

$$
A \in M_{n \times n}(\mathbb{R})
$$

In order to diagonalize A, we solve

1) $\operatorname{det}(A-\lambda I)=0 \rightarrow$ eigenvalue
2) For each eigenvalue λ, solve $(A-\lambda I) \cdot \vec{x}=0$.
\rightarrow eigenvector $(s) \quad V_{\lambda}:=\{\vec{v} \mid A \vec{v}=\lambda v\}$.
If $\sum_{\lambda} \operatorname{dim}\left(V_{\lambda}\right)=n$, then we can find a bas:'s $S=\left\{\vec{v}_{1}, \cdots \vec{v}_{n}\right\}$
of \mathbb{R}^{n}. that are all eigenvectors. $\Rightarrow P^{-1} A P=D$

$$
P=\left(\begin{array}{lll}
v_{1} \\
\downarrow & \cdots & \downarrow^{v_{n}}
\end{array}\right)
$$

Not always diagonalizable:
eg. $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$

For symmetric matrix, such, bad situetion never happens. Thu. $A \in M_{n \times n}(\mathbb{R}) \quad A=A^{\top}$. Then A can always be diagonalized.
Rank. Recall. Cast time: if $\lambda_{1} \neq \lambda_{2}$ ore different eiguralure. then. $V_{\lambda_{1}}$ and $V_{\lambda_{2}}$ are or tho goral to each ocher. So. if A can be diagnalized, then 4 can also be ortheroval diasonalized.

Prep: Block Matrix.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a \cdot a^{\prime}+b c & a \cdot b^{\prime}+b \cdot d^{\prime} \\
c \cdot a^{\prime}+d \cdot c^{\prime} & c \cdot b^{\prime}+d \cdot d^{\prime}
\end{array}\right) \\
& \left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
\hline C^{\prime} & D
\end{array}\right)=\left(\begin{array}{ll}
A \cdot A^{\prime}+B \cdot C^{\prime} & A \cdot B^{\prime}+B \cdot D^{\prime} \\
C \cdot A^{\prime}+D \cdot c^{\prime} & C \cdot B^{\prime}+D \cdot D^{\prime}
\end{array}\right)
\end{aligned}
$$

Pf. Firstly, we can always find at least one eigenvalue λ_{1} for A. then. solve $\left(A \lambda_{-}-I\right) \cdot \vec{x}=0$. so we can find at least one eigenvector \vec{v}_{1} for A.

Assume \vec{v}_{1} is normalized, and extend it to an orthonormal basis. $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$. take $P=\left(\begin{array}{ll}\downarrow & \downarrow \\ \imath_{1} & \downarrow \\ v_{n}\end{array}\right)$ (use Coran-Schmidt)

$$
P^{-1} \cdot A \cdot P=\left(\begin{array}{c|c}
\lambda_{1} & A_{1} \\
\hline 0 & \\
0 & A_{2} \\
0 &
\end{array}\right) \quad \rightarrow\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

Sine A is symmetric, P is orthogonal matrix. $\left(P \cdot P^{\top}=I\right)$ $\left(P^{-1} A P\right)^{\top}=P^{\top} \cdot A^{\top}\left(P^{-1}\right)^{\top}=P^{-1} \cdot A \cdot P$ is symmetrise $\Rightarrow \quad A_{1}=000 \quad A_{2}=A_{2}^{\top}$.
Use induction: © For $n=1$. A is scaler always. true.
(2) Assume for $k<n \quad A \in M_{k \times k}(\mathbb{R})$ is always digoneli

$$
Q^{-1} \cdot A_{2} \cdot Q=D \text { is diag }
$$

There fore. $\tilde{a}:=\left(\begin{array}{l|l}1 & 0 \\ 0 & Q\end{array}\right) \quad \tilde{a}^{-1}=\left(\begin{array}{l|l}1 & 0 \\ 0 & Q^{-1}\end{array}\right)$
we can get $\quad \widetilde{a}^{-1} \cdot\left(\begin{array}{c|c}\lambda_{1} & 0 \\ 0 & A_{2}\end{array}\right) \cdot \tilde{Q}$

$$
\begin{align*}
& =\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & Q^{-1}
\end{array}\right)\left(\begin{array}{c|c}
\lambda_{1} & 0 \\
\hline 0 & A_{2}
\end{array}\right) \cdot\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & Q
\end{array}\right) \\
& =\left(\begin{array}{l|l}
\lambda_{1} & 0 \\
\hline 0 & Q^{-1} A_{2} Q
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} \\
\hline 0 & 0 \\
d_{1} & \\
\ddots & d_{n-1}
\end{array}\right) \tag{ㅁ.}
\end{align*}
$$

2. Quadratic Form.

$$
\begin{aligned}
& f(x, y)=x^{2}+2 x y-3 y^{2} \quad \xrightarrow{/ y^{2}} \tilde{x}=x / y \\
& \bar{x}^{2}+2 \bar{x}-3
\end{aligned}
$$

$$
\begin{aligned}
& =(x+y)^{2}-4 y^{2} \\
& =[(x+y)+2 y] \cdot[(x+y)-2 y]=\underbrace{\left.x^{2}+2\right)^{2}}_{\left(x^{2}+1\right)^{2}-4} \\
& g(x, y)=x \cdot y=g_{1}(x, y)^{2} \pm \\
& \left(x^{2}+1\right)^{2}-4 \\
& \frac{1}{4}(x+y)^{2}-\frac{1}{4}(x-y)^{2} \\
& a x^{2}+b x y+c y^{2}=\stackrel{?}{g_{1}}(x, y)^{2} \pm ?_{\dot{g}_{2}}(x, y)^{2}
\end{aligned}
$$

$$
\begin{aligned}
f(x, y)=a x^{2}+2 b x y+c y^{2} & =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x}{y}=\vec{x}^{\top} \cdot A \cdot \vec{x} \\
& =(a x+b y \quad b x+c y) \cdot\binom{x}{y} \\
& =a x^{2}+b x y+b x y+c y^{2}
\end{aligned}
$$

We see a bijection between.
homogeneous
quadratic polynomials \longrightarrow symmetric matrices
complete the sever $\longrightarrow \quad A$ is diagonal
In general if $P^{-1} A P=D$ then $A=P D \cdot P^{-1}$ the $\quad \vec{x}^{\top} \cdot A \cdot \vec{x}=\vec{x}^{\top} \cdot P \cdot D \cdot P^{-1} \cdot \vec{x}$
then $\vec{y}=P^{-1} \cdot \vec{x} \quad$ linear transformation of $\binom{x}{y}$

$$
=\binom{P_{1} x+P_{2 y}}{P_{3} x+P_{4 y}}
$$

Recall calculus

$$
\begin{aligned}
& f(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
&+\left[\frac{\partial^{2} f}{\partial^{2} x^{2}}\left(x_{0}, y_{0}\right) \cdot \frac{\left(x-x_{0}\right)^{2}}{2}+\frac{\partial^{2} f}{\partial y^{2}}\left(x_{0}, y_{0}\right) \cdot \frac{\left(y-y_{0}\right)^{2}}{2}\right. \\
&+\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right) \cdot\left(y-y_{0}\right) \\
& 2
\end{aligned}+\cdots .
$$

$$
f(x)=f\left(x_{0}\right)+\frac{a t}{d x}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{d^{2}}{d x^{2}}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{2}}{2}+\cdots
$$

local
woul wax
positiondet negetion det.

sodalle indefwite

Def: $Q(x, y)=a x^{2}+2 b x y+c y^{2}$ then.
if $Q(x, y)>0$ for evey $(x, y) \neq(0,0) \Rightarrow$ positive defin:te

$$
\begin{aligned}
Q(x, y)<0 \ldots \quad \Rightarrow & \text { negetine } \\
& \text { definite }
\end{aligned}
$$

$Q(x, y)$ can be booh positive, and negetive \Rightarrow indefinite

