Week 15 Tuesday.
If A can be diagonalized. then use con fidel. Pinvartisle s.t. $\quad P^{-1} A P=D \quad \Leftrightarrow \quad A=P \cdot D \cdot P^{-1}$

If A is symmetric ie. $A=A^{\top}$. then we can take P to be

and $r k(A)=r k(\partial)=\#$ of non-zero entries in the diagonal. because $r k(A)=r k(A$. any invertible matrix) so $\quad r k(A)=r k\left(P^{-1} A\right)=r k\left(P^{-1} \cdot A \cdot\left(P^{\top}\right)^{-1}\right)=r k(D)$
$=$ \# of non-zero eigenvalues (with multiplicity).
None of these make sense for non-squase matrix!
Say $A \in M_{m \times n}(\mathbb{R})$. $\quad B=A^{\top} \cdot A \in M_{n \times n}(\mathbb{R})$
Property of B :
1). B is symmetric $\quad\left(A^{\top} \cdot A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} \cdot A$
2) An eigenvalues of B is non-negetive.

$$
x^{\top} \cdot B x=x^{\top} \cdot A^{\top} \cdot A \cdot x=(A x)^{\top} \cdot(A x)=\|A x\|^{2} \geqslant 0
$$

So it \vec{x} is an eigenvector w.r.t. λ then.

$$
x^{\top} \cdot B x=x^{\top} \cdot(\lambda \cdot x)=\lambda \cdot x^{\top} \cdot x \Rightarrow\|A x\|^{2}=\lambda \cdot\|x\|^{2} \Rightarrow \lambda \geqslant 0
$$

Therefore we can pick a set of eigenvectors of B. $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ that is orthonormal. order. $\vec{v}_{1}, \ldots, \vec{v}_{n}$ st.

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0 .
$$

Thu. $\left\{A \vec{v}_{1}, \ldots, A v_{n}\right\}$ pairwise orthogonal, and. if $\lambda_{1}, \cdots, \lambda_{r}>0$. then. $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{2}\right\}$ is linearly indepadet. $\lambda_{r}>0 \& \& \quad \lambda_{r+1}=0$ then. $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{r}\right\}$ forms an orthogonal basis for $\cos (A)$.
If $i \neq j$
Pt.

$$
\begin{aligned}
& \left(A \vec{v}_{i}\right)^{\top} \cdot\left(A \vec{v}_{j}\right)=\vec{v}_{i}^{\top} \cdot A^{\top} \cdot A \cdot \vec{v}_{j}=\vec{v}_{i}^{\top} \cdot \lambda_{j} \vec{v}_{j}=\lambda_{j} \cdot 0=0 . \\
& \left(A \vec{v}_{i}\right)^{\top} \cdot\left(A \vec{v}_{i}\right)=\vec{v}_{i}^{\top} \cdot A^{\top} \cdot A \cdot \vec{v}_{i}=v_{i}^{\top} \cdot B \cdot \vec{v}_{i}=\lambda_{i} \cdot\left\|\vec{v}_{i}\right\|^{2}=\lambda_{i}
\end{aligned}
$$

if $\lambda_{i}>0$ then $A \vec{v}_{i} \neq \overrightarrow{0}$.
[Given a set of orthogonal nonzero vectors, it must be linearly independent: $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{r}\right\}$ and.

$$
\left.\vec{u}=\sum \alpha_{i} \vec{v}_{i}=\overrightarrow{0} . \quad \text { then. } \quad \alpha_{i}=\vec{u} \cdot \frac{\vec{v}_{i}}{\left\|\vec{v}_{i}\right\|}=\overrightarrow{0} .\right]
$$

If there'ce exactly r eigenvalues $\lambda_{i}>0$ then. $A \vec{v}_{i}=\overrightarrow{0}$ for $i>r$. so $\operatorname{span}\left\{A \vec{v}_{1}, \ldots, A \vec{v}_{n}\right\}=\operatorname{span}\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{r}\right\}$. and. sine $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{n}. we have $\operatorname{span}\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{n}\right\}=\operatorname{Col}(A)$.
$\operatorname{col}(A \cdot V)$

$$
\left(\underset{v_{1}}{\prime \prime} \cdots \downarrow_{v_{n}}\right)
$$

So $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{n}\right\}$. span the $\operatorname{col}(A)$ and are linearly indeperdat. and are othorgonal. So it gives an orthogonal basis for $\cdot \operatorname{Col}(A)$.

Singular value Deroupusition The for $A \in M_{m \times n}(\mathbb{R})$

Pf. $V^{\top}=V^{-1}$ by orthogonality therefore it suffices to prove the $A \cdot V=U \cdot \Sigma$.
 orthononal basis of $A^{\top} \cdot A$ in the oder of $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$.

Construct u by define $\vec{u}_{i}=\frac{A \vec{v}_{i}}{\left\|A \vec{i}_{i}\right\|}$
\sum by define $\sum_{i i}=\sqrt{\lambda_{i}}$
for $i \leqslant r$. whew $r=\#$ of nonzero eigen values of $A^{\top} \cdot A$. Finally extend. $\left\{\vec{u}_{1}, \cdots, \vec{u}_{r}\right\}$ to an orthonormal basis of \mathbb{R}^{m}. Ex. $\quad A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 1 & 2\end{array}\right) \quad$ or $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2\end{array}\right) \quad$ if $A=u \Sigma V^{\top}$ $A^{\top} \cdot A_{2 \times 2}$

$$
A^{\top} \cdot A=3 \times 3
$$

$$
\operatorname{tu} A^{\top}=v \Sigma^{\top} \cdot u^{\top}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
\Sigma_{1}, \vec{u}_{1} \\
& \cdots & \\
& & \varliminf_{\Sigma_{m m}} \cdot u_{m}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pf. } \quad \begin{aligned}
& B=A^{\top} A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
1 & 2
\end{array}\right) \\
&=\left(\begin{array}{ll}
6 & 12 \\
12 & 24
\end{array}\right) \\
& \operatorname{det}(B-\lambda I)=\left|\begin{array}{rr}
6-\lambda & 12 \\
12 & 24-\lambda
\end{array}\right|=\lambda^{2}-30 \lambda+24 \times 6-144 \\
&=\lambda^{2}-30 \lambda+0=0 \\
& \Rightarrow \lambda_{2}=0 \quad \lambda_{1}=30 .
\end{aligned}
\end{aligned}
$$

For $\lambda_{2}=0 \quad\left(\begin{array}{cc}6 & 12 \\ 12 & 24\end{array}\right)\binom{x_{1}}{x_{2}}=0 \quad \vec{x}=x_{2} \cdot\binom{2}{-1}$.

$$
\vec{v}_{2}=\frac{1}{\sqrt{5}} \cdot\binom{2}{-1} .
$$

For $\lambda_{1}=30 .\left(\begin{array}{cc}-24 & 12 \\ 12 & -6\end{array}\right)\binom{x_{1}}{x_{2}}=0 \quad \vec{x}=x_{2} \cdot\binom{1}{2}$

$$
\vec{i}_{1}=\frac{1}{\sqrt{5}} \cdot\binom{1}{2} .
$$

So. $V=\left(\begin{array}{cc}\frac{1}{\sqrt{5}} & 1 \\ \frac{1}{\sqrt{5}} 2 \\ \frac{1}{\sqrt{5}} 2 & \frac{1}{\sqrt{5}}(-1)\end{array}\right) \quad \Sigma=\left(\begin{array}{cc}\sqrt{30} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$

$$
\left.\begin{array}{c}
\vec{u}_{1}=\frac{A \vec{v}_{1}}{\left\|A \vec{v}_{1}\right\|} \rightarrow\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
1 & 2
\end{array}\right) \cdot\binom{1}{2} \cdot \frac{1}{\sqrt{5}}=\left(\begin{array}{c}
5 \\
10 \\
5
\end{array}\right) \cdot \frac{1}{\sqrt{5}}=\left(\begin{array}{c}
\sqrt{5} \\
2 \sqrt{5} \\
\sqrt{5}
\end{array}\right) \\
\left\|\vec{v}_{i}\right\|=\sqrt{\lambda_{i}}
\end{array}\right)
$$

Extend \vec{u}_{1} to orthonornal basis of \mathbb{R}^{3}.
$\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0 \quad \Rightarrow \quad \begin{aligned} & x_{3} \quad x_{2} \text { are fee } \\ & x_{1}=\end{aligned}$

So. $\vec{w}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) \quad \vec{w}_{3}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$

$$
\begin{gathered}
\vec{x}=\left(\begin{array}{c}
-x_{3}-2 x_{2} \\
\dot{x}_{2} \\
x_{3}
\end{array}\right)=x_{3} \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
+x_{2} \cdot\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

$\left\{\vec{u}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is a set of basis for \mathbb{R}^{3} and $\vec{u}_{1} \perp \vec{w}_{2}, \vec{w}_{3}$.
Gram-Schmidt.

$$
\begin{aligned}
\vec{w}_{3}^{\prime}=\vec{w}_{3}-\frac{\vec{w}_{3} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \cdot \vec{w}_{2} & =\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)-\frac{2}{2} \cdot \vec{w}_{2} \\
& =\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

$\left\{\vec{u}_{1}, \frac{1^{\prime \prime}}{\sqrt{2}} \vec{w}_{2}, \frac{\vec{u}_{3}^{\prime}}{\vec{w}_{3}^{\prime}} \frac{\vec{w}_{3}^{\prime}}{\left\|\vec{w}_{3}^{\prime}\right\|}\right\}$ forms an orthonormal hasis

$$
\begin{gathered}
u=\left(\begin{array}{ccc}
1 / \sqrt{6} & -1 / \sqrt{2} & -1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3}
\end{array}\right) \\
A=u \cdot \Sigma \cdot v^{\top} \cdot
\end{gathered}
$$

Application: rk(A) is really small. then. $A \cdot x$ can be faster by uritty $A=u \Sigma V^{\top}$

