Review:

1) Linear systems $\left\{\begin{array}{lll}\text { homogeneous } & A \vec{x}=\overrightarrow{0} & S \\ \text { inhomogeneous } & A \vec{x}=\vec{b}\end{array} \quad \vec{x}_{0}+S\right.$
$\underset{\vec{x}}{A}=\vec{b} \quad A \in \mathbb{M}_{m \times n}(\mathbb{R})$ call $\vec{a}_{i}: \in \mathbb{R}^{m}$ coli weicor in A $\Leftrightarrow x_{1} \cdot \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}=\vec{b} \quad$ in

- consistent? existence \longleftrightarrow a.m. echelon form $\Leftrightarrow \vec{b} \in \operatorname{Col}(A)$ no pinot in the cast colum
- how many? miqueness \longleftrightarrow every column has a pint $\Leftrightarrow \vec{a}_{1}, \ldots, \vec{a}_{n}$ linearly idepedet. (except last collin in ac)

$$
A \vec{x}=\vec{b}=A \vec{z} \Leftrightarrow A \cdot(\vec{x}-\vec{z})=\overrightarrow{0} \Leftrightarrow \operatorname{dim}(\operatorname{Cot}(A))=n \leq m
$$

$\Leftrightarrow \vec{a}_{1}, \cdots, \vec{a}_{n}$ is a basis for $\operatorname{col}(A)$

$$
\Leftrightarrow \quad \operatorname{Null}(A)=\{\overrightarrow{0}\}
$$

$$
\cot (A) \subseteq \mathbb{R}^{m}
$$

$$
\operatorname{Ker}^{\prime \prime}(A)=\{\vec{x} \mid A \vec{x}=0\}
$$

Algorithn: (1). Echelon Form. (Elementary Row Epperatior).
 Swap. Scalar. Replace
(2) $\operatorname{Nnll}(A)$: parametric vector form for solutions of $A \vec{x}=\overrightarrow{0}$.
$\operatorname{Col}(A): \quad A^{\top} \rightarrow$ row echelon form $\rightarrow E^{\top}$
When $n=m$. A is square.
uniqueness of $A \vec{x}=\vec{b} \Leftrightarrow \quad \operatorname{dim}(\operatorname{Col}(A))=n$
$\Leftrightarrow \operatorname{Col}(A) \operatorname{span} \mathbb{R}^{n}$

$$
A \vec{x}=\vec{b}
$$

let $\vec{b}=\vec{e}_{1}, \vec{e}_{2}, \cdots, \vec{e}_{n}$

$$
\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n} \quad \Leftrightarrow \operatorname{det}(A) \neq 0
$$

Algorithe $:(3) \operatorname{det}(A)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \xrightarrow{\operatorname{det}} a d-b c$ $\operatorname{din} 3$

$$
\begin{aligned}
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & d
\end{array}\right) & \rightarrow \text { det } \\
& a \cdot e \cdot i+b f g+c d h \\
& -(a+h+b d i+c e g)
\end{aligned}
$$

ingeneral $A=R_{1} \ldots R_{e} \cdot E$

$$
\begin{aligned}
=\operatorname{det}(A)= & \operatorname{det}\left(R_{1}\right) \cdots \operatorname{det}\left(R_{t}\right) \cdot \operatorname{det}(E) \\
& \text { swap }-1 \\
& \text { Replare } 1 \\
& \text { scalarxa } \times a
\end{aligned}
$$

$$
=\sum_{j}(-1)^{i+j} a_{i j} \cdot m_{i j} \quad F_{i \times i}
$$

$m_{i j}: \operatorname{det}(A$ deleting i-row $)$

$$
=\sum_{i}(-1)^{i+j} a_{i j} \cdot m_{i j} \quad \text { Fix } j
$$

A can be considered as the matvix of a lineen transfosuetion Tw.r.t standard basis.

Agoritm: (3):

$$
\begin{aligned}
& A^{-1}= \\
& \left(\begin{array}{l|l}
A & I \\
\end{array} \xrightarrow{\text { row }}\left(\begin{array}{l|l}
\text { I } & A^{-1}
\end{array}\right)\right.
\end{aligned}
$$

(2)

$$
\frac{1}{\operatorname{det}(A)}\left((-1)^{i+j} m_{j i}\right)
$$

To describe "shape" we need more quantities beyond determine t.
2). Eigen value \& Eigenvectors.
idea: standard \& simple form of a lice ear transfonetion

$$
\begin{array}{ll}
D=\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& \ddots & \\
& & d_{n}
\end{array}\right) \in M_{n \times n}(\mathbb{R}) . \quad \begin{array}{ll}
\operatorname{det}(D)=d_{1} \cdots d_{n} \\
& \operatorname{tr}(D)=d_{1}+\cdots+d_{n} \\
\left(\lambda-d_{1}\right)\left(\lambda-d_{2}\right) & \cdots\left(\lambda-d_{n}\right)=\lambda^{n}+ \\
C_{n-1} \lambda^{n-1}+\cdots+c_{0}
\end{array}
\end{array}
$$

characteristic polyarrial does not change for a linen trawsfometion T w.r.t. differet basis.

Goal: Final a good basis $\left\{\vec{i}_{1}, \cdots, \vec{i}_{n}\right\}$. P invertible. sit. $P^{-1} \cdot A \cdot P=D \Leftrightarrow P \cdot P^{\top} A P=P \cdot D \Leftrightarrow A P \cdot P^{-1}=P \cdot D P^{-1}$

Algor: thin: (4). $\operatorname{det}(A-\lambda I)=0$ solve for λ;
(5) For each λ_{i} solve $\left(A-\lambda_{i} I\right) \cdot \vec{x}=\overrightarrow{0}$ $V_{\lambda}:\left\{\vec{v} \in \mathbb{R}^{n} \mid(A-\lambda ; I) \vec{v}=\overrightarrow{0}\right\}$ eigenspace.
(6) If $\sum_{i} \operatorname{dim}\left(V_{\lambda_{i}}\right)=n \quad\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right)$ are the basis for $\mathbb{R}^{n} . \quad P=\left(\begin{array}{lll}\downarrow_{v_{1}} & \cdots & \downarrow_{n}\end{array}\right)$ then $P^{-1} A P=D$ weer $D_{i i}: e . v$ for $\vec{v}_{:}$.
digonalizetio \longrightarrow complete th serin.
3) Symmetric Matrix: \longleftrightarrow quadratic form. in in variables.

$$
A=A^{\top} \in M_{n \times n}(\mathbb{R})
$$

The: If A is symmetric, then there exists P
s.t. $P^{-1} A P=D$ and P is orthogonal matrix

$$
P^{\top} \cdot A P=D
$$

$$
P \cdot p^{\top}=P^{\top} \cdot p=I
$$

Algorith: (7) Classify types of quadrat: forms.
sign of λ_{i}.
(8) P orthogonal $s \cdot t$.

$$
P^{-1} A P=D
$$

Gram-Schuidt. projection: ally \vec{u}.

$$
\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \cdot \vec{u}
$$

Ex: If a linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$.

$$
\lambda_{1}=1 \quad \lambda_{2}=1 \quad \lambda_{3}=-1
$$

and $\quad \vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \quad \vec{r}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
what is the matrix for T understaderel basis?

$$
\begin{aligned}
& P^{-1} A P=D=\left(\begin{array}{llll}
1 & & \\
& 1 & -1
\end{array}\right) \quad P=\left(\begin{array}{lll}
v_{1} & \downarrow & \downarrow \\
v_{2} & v_{3} \\
& & \downarrow
\end{array}\right) \\
& A=P D P^{-1} \quad P=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
P^{-1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right) \\
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) \\
0 \\
0 \\
0 \\
-2 \\
\hline
\end{array} \\
& A=P \cdot D \cdot P^{-1}=\cdots
\end{aligned}
$$

