Week 3, Tuesday
1.3.

Recall $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}$ then. span of $\left\{\vec{v}_{:}\right\}$is the set of all vectors in the format of $\sum \alpha_{i} \vec{v}_{i}$ (where $\alpha_{i} \in \mathbb{R}$)
Ex: $\quad \vec{v}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{c}-3 \\ 1 \\ 8\end{array}\right) \in \mathbb{R}^{3}$
$\vec{y}=\left(\begin{array}{c}h \\ -5 \\ -3\end{array}\right)$, which values of h is \vec{y} in the span of \vec{v}_{1} and \vec{v}_{2} ?

Ans: If x, y are two nubers sit.

$$
\begin{align*}
& \vec{y}=x \cdot \overrightarrow{v_{1}}+y \cdot \vec{v}_{2} \quad \text { then } \\
& x \cdot\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)+y \cdot\left(\begin{array}{c}
-3 \\
1 \\
8
\end{array}\right)=\left(\begin{array}{c}
h \\
-5 \\
-3
\end{array}\right) \Leftrightarrow \\
& \left\{\begin{array}{cc}
x-3 y=h & \text { abm. is } \\
x \cdot 0+y=-5 \\
-2 x+8 y=-3
\end{array}\right. \tag{1}
\end{align*}
$$

To get an echelon form.
(3) \leadsto (3) + (1) $\times 2$
(3) \rightarrow (3) - (2) $\times 2$

$$
\left(\begin{array}{cc|c}
\square & -3 & h \\
0 & \square & -5 \\
0 & 2 & -3+2 h
\end{array}\right)
$$

$$
\left(\begin{array}{cc|c}
1 & -3 & h \\
0 & 1 & -5 \\
0 & 0 & 2 h-3+10
\end{array}\right)
$$

This echelon form has no pivot in the last column if and only if the linear system has a solution.

So \vec{y} is a linear combination of \vec{v}_{1} and $\vec{v}_{2}, \Leftrightarrow \quad 2 h+7=0$, ie. $h=-\frac{7}{2}$.

Geometric picture of span.

$$
\begin{aligned}
& \vec{v}_{1}=\binom{1}{0} \quad \vec{v}_{2}=\binom{0}{1} \\
& x \cdot \vec{v}_{1}+y \cdot \vec{v}_{2}=\binom{x}{y}
\end{aligned}
$$

We say that \vec{v}_{1} and \vec{v}_{2} span \mathbb{R}^{2}, or span $x-y$ plane. Q: Does $\quad \vec{u}_{1}=\binom{1}{2} \quad \vec{u}_{2}=\binom{2}{-3}$ span \mathbb{R}^{2} ?

For every weitor in \mathbb{R}^{2}, say $\vec{y}=\binom{y_{1}}{y_{2}}$ we can find

$$
x_{1}, x_{2} \text { s.t. } \quad x_{1} \cdot \vec{u}_{1}+x_{2} \cdot \vec{u}_{2}=\vec{y} \quad \text { because. }
$$

the a.m. $\left(\begin{array}{rr|r}1 & 2 & y_{1} \\ 2 & -3 & y_{2}\end{array}\right)$ has an echelon form.

$$
\left(\begin{array}{cc|c}
1 & 2 & y_{1} \\
0 & \boxed{-7} & y_{2}-y_{1} \times 2
\end{array}\right)
$$

1.4 Matrix equation

Def. A. a man matrix, with colum vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots$ \vec{a}_{n}, and $\vec{x} \in \mathbb{R}^{n}$. We define

$$
A \cdot \overrightarrow{\mathbf{x}} \triangleq\left(\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} \cdot \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n} .
$$

Then linear system

$$
\begin{aligned}
& \left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right. \\
& \Leftrightarrow x_{1} \cdot \vec{a}_{1}+x_{2} \cdot \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}=\vec{b} \\
& \text { II by dat above } \\
& A \cdot \vec{x}=\vec{b}
\end{aligned}
$$

Therepre. the linear system has a solution it and only if. \vec{b} is in the span of colum vectors in A, the c.m.
1.5 Solution set of linear systems.

Ex. Solve. both linear systems.

$$
\left\{\begin{array} { r }
{ x _ { 1 } + 2 x _ { 2 } - x _ { 3 } = 0 } \\
{ x _ { 2 } + x _ { 3 } = 0 } \\
{ - x _ { 1 } + x _ { 2 } + 4 x _ { 3 } = 0 }
\end{array} \quad \left\{\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=1 \\
x_{2}+x_{3}=2 \\
-x_{1}+x_{2}+4 x_{3}=5
\end{array}\right.\right.
$$

abm.

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & \square & 1 & 0 \\
-1 & 1 & 4 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & \sqrt{1} & 1 & 2 \\
-1 & 1 & 4 & 5
\end{array}\right)
$$

(3) \rightarrow (3) + (1).

$$
\text { (3) } \rightarrow \text { (3) }+ \text { (1). }
$$

$\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 0 & \boxed{1} & 1 & 0 \\ 0 & 3 & 3 & 0\end{array}\right)$

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & \boxed{11} & 1 & 2 \\
0 & 3 & 3 & 6
\end{array}\right)
$$

(3) \rightarrow (3) - (2) $\times 3$
(3) \rightarrow (3) - (2) $\times 3 \leadsto x_{1}+2 x_{2}-x_{3}=1$

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 0 \\
0 & \square & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
0 & \square & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

て $ク$
basic variables. fie variable
basis variables. free

$$
\left\{\begin{array}{l}
x_{1}=x_{3}-2 x_{2}=3 x_{3} \\
x_{2}=-x_{3} \\
x_{3} \text { is free }
\end{array}\right.
$$

$$
\vec{x}=\left(\begin{array}{c}
3 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right)=x_{3} \cdot\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right)
$$

The solution set is span of $\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$

$$
\begin{aligned}
& x_{1}=1+x_{3}-2 \cdot x_{2}=-3+3 x_{3} \\
& x_{2}=2-x_{3} \\
& x_{3} \text { is free }
\end{aligned}
$$

$$
\vec{x}=\left(\begin{array}{c}
-3+3 x_{3} \\
2-x_{3} \\
0+x_{3}
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right)+x_{3} \cdot\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right)
$$

particular solution general

$$
A \vec{x}=\vec{b}
$$

Notice that

$$
\vec{x}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+x_{3} \cdot\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right) \text { will }
$$

also be a parametric vector form of the solution set.

Def. $A \cdot \vec{x}=\overrightarrow{0}$ is called homogeneous. linear system. $A \cdot \vec{x}=\vec{b}$ with non-zes \vec{b} is called non-homogeneors?
Tho. Suppose $A \vec{x}=\vec{b}$ has a solution \vec{p}. Then the set of solutions to $A \vec{x}=\vec{b}$ contains exactly rectors of the form $\vec{p}+\vec{v}$ uhese \vec{v} is a solution to $A \vec{x}=\overrightarrow{0}$
Pf. (1). Firstly check that all vectors $\vec{p}+\vec{v}$ are solutions of $A \vec{x}=\vec{b}$.

$$
A \cdot(\vec{p}+\vec{v})=A \cdot \stackrel{\rightharpoonup}{p}+A \cdot \vec{v}=\vec{b}+\stackrel{\rightharpoonup}{0}=\vec{b}
$$

(2) Secondly, check that all solutions can be written in this format.
Suppose \vec{u} is a solution. i.e. $A \cdot \vec{u}=\vec{b}$.
then $\vec{u}=\vec{p}+(\vec{u}-\vec{p})$ and then.

$$
A \cdot(\vec{u}-\vec{p})=A \cdot \vec{u}-A \cdot \vec{p}=\vec{b}-\vec{b}=\overrightarrow{0} .
$$

Geometric Picture.

solution set of non-homogencous. unique line that is passing \vec{v}_{0} and parallet to l_{1}

Ex. $\left\{\begin{array}{l}2 x_{1}+x_{2}-x_{3}+2 x_{4}=3 \\ 4 x_{1}-x_{2}-2 x_{3}+7 x_{4}=3\end{array}\right.$
Solve this system and write solution into parametric vector form.

$$
\begin{aligned}
& \text { a.m. } \left.\left(\begin{array}{cccc|c}
\frac{12}{4} & 1 & -1 & 2 & 3 \\
4 & -1 & -2 & 7 & 3
\end{array}\right) \quad \begin{array}{cccc|c}
12 & 1 & -1 & 2 & 3 \\
0 & -3 & 0 & 3 & -3
\end{array}\right) \\
& \left\{\begin{array}{ll}
x_{1}=\left(3-2 x_{4}+x_{3}-x_{2}\right) & 12=1+\frac{x_{3}}{2} \\
x_{2}=1+x_{4} & \begin{array}{l}
\text { basic } \\
x_{3} \text { is free }
\end{array} \\
\begin{array}{ll}
\text { variables variables } \\
x_{4} \text { is free }
\end{array}
\end{array} \begin{array}{l}
\frac{3}{2} x_{4}
\end{array}\right.
\end{aligned}
$$

So the solution is

$$
\vec{x}=\left(\begin{array}{c}
1+\frac{x_{3}}{2}-\frac{3}{2} x_{4} \\
1+x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)}_{\substack{1 \\
\text { particular } \\
\text { solution of } \\
A \vec{x}=6 .}}+\underbrace{\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right)+x_{4} \cdot\left(\begin{array}{c}
-\frac{3}{2} \\
1 \\
0 \\
1
\end{array}\right)}_{\text {general }}
$$

Conclusion: If $A \vec{x}=\vec{b}$ has a migue solution, then $A \vec{x}=\overrightarrow{0}$ also has a migue solution.
Q: Does the converse holds?

