Week 3. Thursday.
Last time: we show that. the solution set for $A \vec{x}=\vec{b}$ is $\vec{v}+$ solution set of $A \vec{x}=\overrightarrow{0}$ where \vec{v} is a particular solution of $A \vec{x}=\vec{b}$.
Therefore if $A \vec{x}=\vec{b}$ has a unique solution, then $\vec{A} \vec{x}=\overrightarrow{0}$ has a unique solution. (which must be $\vec{x}=\overrightarrow{0}$).

The comerse is not necessarily true.
a.m. for $A \vec{x}=\overrightarrow{0}$ is

$$
\left(\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a.m for $A \vec{x}=\vec{b}$ where $\vec{b}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\left(\begin{array}{llll|l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow \vec{x}=0$ is the only solution. since there is no free variable.
\Rightarrow no solution since there is a pinot in last column.

In order for $A \vec{x}=\vec{b}$ to have a solution.
we just need $\vec{b}=\left(\begin{array}{c}* \\ * \\ * \\ * \\ 0\end{array}\right)$.
Q: For this A. is it true that $A \vec{x}=\vec{b}$ has exactly one solution when $A \vec{x}=\vec{b}$ has a solution? Yes!

Conclusion: If $A \vec{x}=\overrightarrow{0}$ has a unique solution, then $A \vec{x}=\overrightarrow{6}$ has at most one solution.
Q: If $A \vec{x}=\overrightarrow{0}$ has ∞ solutions, how many solutions $A \vec{x}=\vec{b}$ has?

Conclusion: If $A \vec{x}=\overrightarrow{0}$ has ∞ solutions, then $A \vec{x}=\vec{b}$ either has no solutions, or has ∞ solutions. へ simply. use

- Less trivial examples that are inconsistent: structure of atm.

$$
\left(\begin{array}{lll|l}
\square D & 0 & 0 & 0 \\
0 & 0 & L & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \square
\end{array}\right)
$$ solution set of nouhomogeneors system.

$A \vec{x}=\overrightarrow{0} \quad \infty$ solutions $\quad A \vec{x}=\vec{b} \quad$ no solution.
1.6 Application.

Economic: iuput-ontput model says that each. sector of economic pays the same amount of money with. the amount of money they make:

Sector $A \quad B \quad C$.

Purchased	Chemicals	Fuels	Machinery.
C	20%	80%	40%
F	30%	10%	40%
M	50%	10%	20%

Q: What is the equilibrium pricing (total value) for each sector? P_{C}, P_{F}, P_{M}
For $C . \quad P_{c}=0.2 P_{c}+0.8 P_{F}+0.4 P_{M}$

$$
\begin{equation*}
0.8 P_{C}-0.8 P_{F}-0.4 P_{M}=0 \tag{0}
\end{equation*}
$$

F. $\quad P_{F}=0.3 P_{c}+0.1 P_{F}+0.4 P_{M}$.
M. $\quad P_{M}=0.5 P_{C}+0.1 P_{F}+0.2 P_{M}$.
arm. $\left(\begin{array}{rrr|r}8 & -8 & -4 & 0 \\ -3 & 9 & -4 & 0 \\ -5 & -1 & 8 & 0\end{array}\right)$
(3) \sim (3) + (1) + (2) Q: Is this purely lucky or $\left(\begin{array}{ccc|c}8 & -8 & -4 & 0 \\ -3 & 9 & -4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
coimidence?
(2) Can you ever find a situation where there are two zero rows in e.f.?
(2) \rightarrow (2) + (1) $\cdot \frac{3}{8}$

$$
\left.\begin{array}{ccc|c}
{[8} & -8 & -4 & 0 \\
0 & \sqrt{2-3} & -4-\frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
P_{C}=P_{F}+\frac{1}{2} P_{M}=\frac{17}{12} P_{M} \\
P_{F}=\frac{11}{12} P_{M} \\
P_{M} \text { is fee e }
\end{array}\right.
$$

fere variables.
$\vec{P}=\left(\begin{array}{c}\frac{17}{12} \\ \frac{11}{12} \\ 1\end{array}\right) \cdot P_{M}$ is the parametric rector form.
Chemical Equations (Read for Yourself).
Network Flow: Subway system in a city.

For node A : $\quad 1000=x_{5}+x_{4}-x_{1}$
node $B: \quad x_{4}+x_{8}=x_{6}+300$
C
D
E

