| Week 4 Thesday.                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.7 Linear indepence                                                                                                                                                                                                                        |
| Det. U,, U, EIR are linearly independent if                                                                                                                                                                                                 |
| $\chi_1 \overline{v_1} + \chi_2 \overline{v_2} + \cdots + \chi_p \overline{v_p} = \overline{0}$                                                                                                                                             |
| has only trivial solution (X, = X2 = = Xp=0).<br>*: when vi,, vp has non-trivial solution we say they are linearly.<br>Recall that vector equation is equivalent to a linear                                                                |
| system. In particular, this linear system is a homogenous                                                                                                                                                                                   |
| system where. c.m. has n rows and p columns.                                                                                                                                                                                                |
| Conclusion. The homogeneus system Ax = o has only                                                                                                                                                                                           |
| trivial solution x= 5 (=> Column nectors of A are                                                                                                                                                                                           |
| linearly independent.                                                                                                                                                                                                                       |
| $E_{X} \cdot \vec{v}_{l} = \begin{pmatrix} l \\ 3 \end{pmatrix}  \vec{v}_{2} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} \in \mathbb{R}^{2}$                                                                                                     |
| $\chi_1 \cdot \vec{v_1} + \chi_2 \cdot \vec{v_2} = \vec{v_1} \iff \begin{cases} x_1 + 2 \chi_2 = 0 \end{cases}$                                                                                                                             |
| $\chi_1 \cdot \chi_1 + \chi_2 \cdot \chi_2 = 0 \iff \begin{cases} x_1 + 2 \chi_2 = 0 \\ 3 \chi_1 + 6 \chi_2 = 0 \end{cases}$                                                                                                                |
| a.m. is $\begin{pmatrix} 1 & 2 &   & 0 \\ 3 & 6 &   & 0 \end{pmatrix}$ $(2 \rightarrow 2 - 3 \times 0)$<br>$\begin{pmatrix} 1 & 2 &   & 0 \\ 0 & 0 &   & 0 \end{pmatrix}$<br>$\begin{pmatrix} 0 & 0 &   & 0 \\ 0 & 0 &   & 0 \end{pmatrix}$ |
| os solutions => v, and viz free variable                                                                                                                                                                                                    |
| are not linearly independent.                                                                                                                                                                                                               |
| Or. Another may is to observe that.                                                                                                                                                                                                         |

2.  $\vec{v}_1 - 1. \vec{v}_2 = \vec{o}$  so  $X_1 = 2$ is a non-trivuil  $X_L = I$ solution.  $\vec{E} \mathbf{x}_{1} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \qquad \vec{v}_{1} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ A.m.  $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 5 & 0 \end{pmatrix}$   $(2 \rightarrow 2 - 3 \times 0) \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ So migne solution X=0. Geometric Picture. Thm. If  $\overline{v}_1, \cdots, \overline{v}_p$  are linearly dependent, then.  $\exists j s.t.$ is a linear combination of [ti, | i+j].  $\overrightarrow{rf}$ . There exists  $\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \neq \overrightarrow{o}$  s-t.  $\pi_1 \vec{v}_1 + \pi_2 \vec{v}_2 + \cdots + \pi_p \cdot \vec{v}_p = 0$ so. if  $X_j \neq 0$  then  $\vec{v}_i = -\frac{1}{x_j} \cdot (x_i \cdot \vec{v}_i + \vec{x}_2 \cdot \vec{v}_2 + \dots + x_p \cdot \vec{v}_p)$ 8-1 term, no j-term.  $\vec{v}_1$ ,  $\vec{v}_2$ ,  $\vec{v}_3 \in \mathbb{R}^3$ plane containing span of  $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{2}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$   $\vec{v}_{2}$   $\vec{v}_{1}$ 

1.8 Linear transformations A function f: IR -> IR is a map that specifies one ontput for each input. e.g. f(x) = ax+b.  $f(x) = x^2$ , ..., f(x) = sin x. f(x) = arcsin X.  $\in$ ax+b is a linear function. it looks like aline. We can generalize  $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ . eg. linear combinations of vector. given Vi, ..., Vn E IR then.  $f: \begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix} \rightarrow \vec{y} = x_{i} \cdot \vec{v_{i}} + \cdots + x_{n} \cdot \vec{v_{n}} \in \mathbb{R}^{m}$   $+ \vec{v_{n}}$  $\vec{y} = A \cdot \vec{x} + \vec{v}$ Linear Transformation A fuction of from IR" to IR" is called linear イ 1) 「( u + マ ) = 「( u ) + 「( v ) 2)  $f(c, \vec{u}) = c \cdot f(\vec{u})$ .  $\forall c \in \mathbb{R}$ eg. if  $f(\vec{x}) = A \cdot \vec{x}$  then.  $f(\vec{n} + \vec{v}) = A \cdot (\vec{n} + \vec{v}) = A \cdot \vec{u} + A \cdot \vec{v} = f(\vec{u}) + f(\vec{v})$ 

 $f(c, \vec{n}) = A(c, \vec{n}) = c(A, \vec{n}) = c \cdot f(\vec{n}).$ 

Several Class of linear transformations: in IR<sup>2</sup> we can give A in different taste:



