Week 4 Tuesday.
1.) Linear indepence

Def. $\vec{v}_{1}, \cdots, \vec{v}_{p} \in \mathbb{R}^{n}$ are linearly independent if

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}
$$

has only trivial solution $\left(x_{1}=x_{2}=\cdots=x_{p}=0\right)$. dependent *: when $\vec{v}_{1}, \ldots, \vec{v}_{p}$ has non-trivial solution we say they are linearly. Reel that vector equation is equivalent to a linear system. In particular. this linear system is a homogenons system where. $c . m$. has n rows and P columns.

Conclusion: The homogeraus system $A \vec{x}=\overrightarrow{0}$ has only trivial solution $\vec{x}=\overrightarrow{0} \Leftrightarrow$ Column vectors of A are linearly independent.

$$
\begin{aligned}
& \text { EX. } \vec{v}_{1}=\binom{1}{3} \quad \overrightarrow{v_{2}}=\binom{2}{6} \in \mathbb{R}^{2} \\
& x_{1} \cdot \vec{v}_{1}+x_{2} \cdot \vec{v}_{2}=\overrightarrow{0} \Leftrightarrow\left\{\begin{array}{l}
x_{1}+2 x_{2}=0 \\
3 x_{1}+6 x_{2}=0
\end{array}\right.
\end{aligned}
$$

a.m. is $\left(\begin{array}{ll:l}1 & 2 & 0 \\ 3 & 6 & 0\end{array}\right)$
(2) \leadsto (2) $-3 \times(1$.

$$
\left(\begin{array}{ll:l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

∞ solutions $\Rightarrow \vec{v}_{1}$ and \vec{v}_{2} pee variable are not linearly independent.
Or. another way is to observe that.
2. $\vec{v}_{1}-1 \cdot \vec{v}_{2}=\overrightarrow{0} \quad$ so $\quad x_{1}=2 \quad x_{2}=1 \quad$ is a non-trivaif solution.
Ex. $\quad \overrightarrow{i_{1}}=\binom{1}{3} \quad \vec{i}_{2}=\binom{2}{5}$
$\operatorname{a.m} .\left(\begin{array}{ll:l}1 & 2 & 0 \\ 3 & 5 & 0\end{array}\right) \quad(2)(2)-3 \times 0\left(\begin{array}{cc:c}1 & 2 & 0 \\ 0 & \boxed{-1} & 0\end{array}\right)$

So unique solution $\vec{x}=\overrightarrow{0}$.
Geometric Picture.
Tho. If $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly dependent, then. $\exists j$ s.t.
\vec{v}_{j} is a linear combination of $\left\{\vec{v}_{i} \mid i \neq j\right\}$.
pf. There exists $\vec{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{p}\end{array}\right) \neq \overrightarrow{0} \quad$ st.

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \cdot \vec{v}_{p}=0
$$

so. if $x_{j} \neq 0$ then $\vec{v}_{j}=-\frac{1}{x_{j}} \cdot\left(x_{p-1 \text { term, no } j \text {-term. }}^{\vec{v}_{1}+\vec{x}_{2} \vec{v}_{2}+\ldots+x_{p}} \vec{v}_{p}\right)$

$$
\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}_{z}^{3}
$$

Suppose $\vec{v}_{1}, \vec{v}_{2}, \overrightarrow{v_{3}}$ are linearly deperdert then \vec{v}_{3} is on

$$
\begin{aligned}
& \vec{x}(t)=\vec{v}_{0}+t \cdot \vec{v}_{1} \\
& \vec{x}(u, v)=\vec{v}_{0}+u \cdot \vec{v}_{1}+
\end{aligned}
$$ the plane spanned by \vec{v}_{1} and \vec{v}_{2}.

In another words, \vec{v}_{3} is not necessary to span this plane, or. $\operatorname{span}\left\{\vec{v}_{1}, \vec{i}_{2}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \overrightarrow{v_{3}}\right\}$.

So given $\vec{v}_{s}, \ldots, \vec{u}_{p}$. if we want to build a linearly independent set that $\operatorname{spans} \operatorname{span}\left\{\vec{v}_{1}, \cdots, \vec{v}_{p}\right\}$. we inst need to delete \vec{v}_{j} that can be written as a linear combination of $\vec{v}_{1}, \cdots, \vec{v}_{j-1}, \vec{v}_{j+1}, \cdots, \vec{v}_{p}$.

Thy. Let $\vec{v}_{1}, \ldots, \vec{v}_{p} \in \mathbb{R}^{n}$, If $p>n$, then $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly dependent.
Pf. The linearly system coreespording to

$$
x_{1} \vec{v}_{1}+\cdots+x_{p} \cdot \vec{v}_{p}=\overrightarrow{0}
$$

has. atm. P

Since $n<p$, we canner find pivot for every column. so there must be free variable. So there are ∞
solutions. So $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are lineerly dependent.

$$
\text { Ex. } \vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
3
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
-1 \\
2
\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right)
$$

Ave they lin. dep?
(3) m (3) $-2 \times(1$

$$
\left(\begin{array}{ccc:c}
1 & 2 & 3 & 0 \\
0 & \square & 1 & 0 \\
2 & -1 & 1 & 0 \\
3 & 2 & -1 & 0
\end{array}\right)
$$

(4) $\rightarrow>$ (4) $-3 \times$ (1).
(3) \rightarrow (3) $+5 \times$ (2)
$\left(\begin{array}{ccc:c}1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -5 & -5 & 0 \\ 0 & -4 & -10 & 0\end{array}\right)$
(4) \rightarrow (4) $+4 \times$ (2)

$$
\left(\begin{array}{ccc:c}
\square & 2 & 3 & 1 \\
0 & \square & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & -6 & 0
\end{array}\right)
$$

(3) \leftrightarrow (4)

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 0 \\
0 & \square & 1 & 0 \\
0 & 0 & -6 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

so there is one urique solution $x_{i}=0$. So l in independert.
Ex.

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
3
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
-1 \\
2
\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{l}
3 \\
1 \\
1 \\
1
\end{array}\right) \quad \vec{v}_{4}=\left(\begin{array}{c}
-1 \\
2 \\
3 \\
5
\end{array}\right)
$$

$\vec{v}_{5}=\left(\begin{array}{l}3 \\ -1 \\ -2 \\ -4\end{array}\right)$. \quad in dep sinie $p>n$.
1.8 Linear trans formations

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a map that specifies one output for each input.
e.g. $f(x)=a x+b . \quad f(x)=x^{2}, \cdots, f(x)=\sin x . \quad f(x)=\arcsin x . \epsilon$ $[0,2 \pi)$ $a x+b$ is a linear function. it looks like aline.

We can generalize. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
egg. linear combinations of vector.
given $^{\vec{v}_{0}}, \vec{v}_{1}, \cdots, \vec{v}_{n} \in \mathbb{R}^{m}$. then.
$f:\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \rightarrow \begin{aligned} & \\ &+\vec{y}=x_{1} \cdot \vec{v}_{1}+\cdots+\vec{v}_{0} \\ & \vec{v}_{n} \in \mathbb{R}^{m}\end{aligned}$

$$
\vec{y}=A \cdot \vec{x}+\vec{v}_{0}
$$

Linear Transformation:
A function f from \mathbb{R}^{n} to \mathbb{R}^{m} is called linear.
if

1) $f(\vec{u}+\vec{v})=f(\vec{u})+f(\vec{v})$
2) $f(c \cdot \vec{u})=c \cdot f(\vec{u}) \cdot \forall c \in \mathbb{R}$
eg. If $f(\vec{x})=A \cdot \vec{x}$ then.

$$
\begin{aligned}
& f(\vec{u}+\vec{v})=A \cdot(\vec{u}+\vec{v})=A \cdot \vec{u}+A \cdot \vec{v}=f(\vec{u})+f(\vec{v}) \\
& f(c \cdot \vec{u})=A \cdot(c \vec{u})=c \cdot(A \cdot \vec{u})=c \cdot f(\vec{u}) .
\end{aligned}
$$

Several Class of linear transformation: in \mathbb{R}^{2} we can give A in different taste:

$$
\left.\begin{array}{cc}
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
(x, y) \rightarrow(y, x) \\
y
\end{array}\right)
$$

