

which is another point connecting P. and P. on the right hand side.

 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

T: IR -> IR". Det_ A linear transformation is injective if. for each $y \in \mathbb{R}^n$, there exists at most one $\tilde{x} \in \mathbb{R}^n$ s.t. T(\vec{x})= \vec{y} . T is <u>surjective</u> if for every $\vec{y} \in \mathbb{R}^n$. there exists at least one $\vec{x} \in \mathbb{R}^m$ s.t. $T(\vec{x}) = \vec{y}$. Thm. Any linear transformation T: IR -> IR" Can be described by T(x) = A.x. 2). T is injectice iff o is the only premeye et d. Pt. Dante $\vec{E}_i = \begin{pmatrix} 0 \\ 0 \\ i \\ 0 \end{pmatrix} \in i - th xow.$ |≤i ≤ m and denote. $\vec{d_i} = T(\vec{e_i})$ then. $T(\chi_1 \vec{e}_1 + \chi_2 \vec{e}_2 + \cdots + \chi_m \cdot \vec{e}_m) = \chi_1 \cdot T(\vec{e}_1) + \cdots + \chi_m \cdot T(\vec{e}_m)$ $= \chi_1 \cdot d_1 + \cdots + \chi_m \cdot d_m.$ $T(\vec{x})$ for $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ $= \begin{pmatrix} \vec{d}_{1} \\ \vec{d}_{2} \end{pmatrix} \quad \vec{d}_{n} \quad \vec{d}_{n} \end{pmatrix} \begin{pmatrix} \vec{x}_{1} \\ \vdots \\ \vdots \\ \vec{x}_{n} \end{pmatrix}$ so T=A·x where A has color vector d_j . Is j = m. 2). => Trivial, by det of injectie.] $(= Suppose T is not injustive and <math>X_1 \neq X_2$ s.t. $T(x_1) = T(x_2)$ then $T(\vec{x_1} - \vec{x_2}) = T(\vec{x_1}) - T(\vec{x_2}) = \vec{0}$ so. X, -X, = o is another preinge of O.