Week 3 Thursday.
Recall $\vec{y}=A \cdot \vec{x}+\vec{b} \quad \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
Linear Transformation: $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

- $\left.T_{(} \vec{x}_{1}+\vec{x}_{2}\right)=T\left(\vec{x}_{1}\right)+T\left(\vec{x}_{2}\right)$
- $T(c \cdot \vec{x})=c \cdot T(\vec{x})$

Let $\vec{T} \vec{b}=A \vec{x}+\vec{b}$
$T\left(\vec{x}_{1}+\vec{x}_{2}\right)=A \cdot\left(\overrightarrow{x_{1}}+\vec{x}_{2}\right)+\vec{b}$

$$
=A \vec{x}_{1}+A \vec{x}_{2}+\vec{b} \stackrel{?}{=} T\left(\vec{x}_{1}\right)+T\left(\vec{x}_{2}\right)
$$

The equality only holds when $\vec{b}=\overrightarrow{0}$.
If $\vec{b}=\overrightarrow{0}$, then. $T(c \vec{x})=A \cdot(c \vec{x})=c \cdot(A \vec{x})$

$$
=c \cdot T(\vec{x})
$$

Conclusion: $\vec{y}=A \vec{x}$ are always linear tran formation.
Examples

$$
\begin{equation*}
\mathbb{R}^{2} \tag{T}
\end{equation*}
$$

Linear Transformation T maps line to line.
Pf: Points on the line connecting P_{1} and P_{2} can be written as $\vec{i}=\lambda \cdot \overrightarrow{v_{1}}+(1-\lambda) \overrightarrow{v_{2}}$ for $0 \leq \lambda \leq 1$ (little ex for you) By linearality of T.

$$
\begin{aligned}
T(\vec{v}) & \left.=T\left(\lambda \overrightarrow{v_{1}}+(1-\lambda) \vec{v}_{2}\right)=T\left(\lambda \vec{v}_{1}\right)+T(1-\lambda) \vec{v}_{2}\right) \\
& =\lambda T\left(\vec{v}_{1}\right)+(1-\lambda) T\left(\vec{v}_{2}\right)
\end{aligned}
$$

which is another point connect P_{1} and P_{2} on the right hand side.

Concrete Example.

- Reflection.

Suppose A is this matrix. $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ then.

$$
\begin{aligned}
& A(\vec{x})=x_{1} \cdot\binom{a_{11}}{a_{21}}+x_{2}\binom{a_{12}}{a_{22}} \\
& A\binom{1}{0}=\binom{a_{11}}{a_{21}}=\binom{0}{1} \quad \therefore \quad A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { gives this } \\
& A \cdot\binom{0}{1}=\binom{a_{12}}{a_{22}}=\binom{1}{0} \quad \text { l.t. }
\end{aligned}
$$

- Shear Transformation $\mathbb{R}^{2} \quad A=\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right) \uparrow$

T

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

- Rotation.

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Dilation / Contraction. $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right) \quad \lambda>0$.

P_{2}^{\prime}

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

- Projection. $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

$$
\begin{aligned}
& \text { is not injutive. } \\
& A \cdot\binom{0}{0}=A \cdot\binom{0}{1}=\overrightarrow{0}
\end{aligned}
$$

Ill//// dome ir \mathbb{R}^{2}
 is not suriective. simple $\binom{0}{1}$ is not in the image.
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
Def. A linear transformation is injecting if. for each $\vec{y} \in \mathbb{R}^{n}$, there exists at most one $\vec{x} \in \mathbb{R}^{m}$ s.t. (or onto)
$T(\vec{x})=\vec{y}$. T is surjective if for every $\vec{y} \in \mathbb{R}^{n}$. the exists at least one $\vec{x} \in \mathbb{R}^{m}$ s.t $T(\vec{x})=\vec{y}$.

Tho. "Any linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be described by $T(\vec{x})=A \cdot \vec{x}$.
2). T is injectie iff $\overrightarrow{0}$ is the only preineye of $\overrightarrow{0}$. pf. "Denote $\vec{e}_{i}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0\end{array}\right) \leftarrow i-t$ th row. $\quad 1 \leq i \leq m$ and denote. $\vec{d}_{i}=T\left(\vec{e}_{i}\right)$ then.

$$
\begin{aligned}
& T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots x_{m} \cdot \vec{e}_{m}\right)=x_{1} \cdot T\left(\vec{e}_{1}\right)+\cdots+x_{m} T\left(\vec{e}_{m}\right) \\
& =x_{1} \cdot \vec{d}_{1}+\cdots+x_{m} \cdot \vec{d}_{m} . \\
& T(\vec{x}) \\
& \text { for } \vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\overrightarrow{d_{1}} \\
\downarrow \\
\downarrow
\end{array} \quad \downarrow \begin{array}{l}
\vec{d}_{m} \\
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)
\end{aligned}
$$

So $T=A \cdot \vec{x}$ where A has colum vector $\vec{a}_{j} \cdot 1 \leqslant j \leq m$.
2). \Rightarrow Trivial. by def of infective.
\Leftrightarrow suppose T is not invective. and $\vec{x}_{1} \neq \vec{x}_{2}$ s.t.

$$
T\left(\vec{x}_{1}\right)=T\left(\vec{x}_{2}\right)
$$

then $T\left(\vec{x}_{1}-\vec{x}_{2}\right)=T\left(\vec{x}_{1}\right)-T\left(\vec{x}_{2}\right)=\overrightarrow{0}$
So. $\vec{x}_{1}-\vec{x}_{2} \neq 0$ is another preinge of $\overrightarrow{0}$.

