Week 4 Tuesday.
Real linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

1) $T\left(\vec{v}_{1}+\vec{r}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$
2) $T(c \cdot \vec{v})=c \cdot T(\vec{v})$
T is always in the format of a matrix. examples of 7 :
rotation, dilation, reflection, projection.
shear transformation.

QI:

$$
\mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{m} \xrightarrow{A} \mathbb{R}^{r}
$$

Is the composition still linear?
linear
an: Can you build up all $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via taking compositions of the examples listed above?

For Q_{1} :
Prop. Given linear transformations A \& $B . \mathbb{R}^{n} \xrightarrow{B} \mathbb{R}^{m} \rightarrow \mathbb{R}^{r}$ their composition. $C=A \cdot B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$. is still linear. def of comp
prow of:

$$
\begin{aligned}
& (A \circ B)\left(\vec{v}_{1}+\vec{v}_{2}\right)_{B_{B}=1}^{b} A\left(B\left(\vec{v}_{1}+\vec{v}_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& A \text { is linear }\left(B\left(\vec{v}_{1}\right)\right)+A\left(B\left(\vec{v}_{2}\right)\right) \\
& { }^{\downarrow}=(A \circ B)\left(\vec{v}_{1}\right)+(A \circ B)\left(\vec{v}_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
(A \circ B)(c \cdot \vec{v}) & =A(B(c \vec{v}))=A(c B(\vec{v}))=c \cdot A(B(\vec{v})) \\
& =c \cdot(A \cdot B)(\vec{v}) \tag{I.}
\end{align*}
$$

Q3: what is the matrix representing $A \cup B ?$

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

Hen $\mathbb{R}^{2} \xrightarrow{B} \mathbb{R}^{2} \xrightarrow{A} \mathbb{R}^{2}$

$$
\left.\begin{array}{rl}
\vec{e}_{1}=\binom{1}{0} & \xrightarrow{B}\binom{b_{11}}{b_{21}}=b_{11} \cdot \vec{e}_{1}+b_{21} \cdot \vec{e}_{2} \xrightarrow{A} b_{11} \cdot A\left(\vec{e}_{1}\right)+b_{21} \cdot A\left(\vec{e}_{2}\right) \\
\vec{e}_{2}=\binom{0}{1} & \xrightarrow{B}\binom{b_{12}}{b_{22}}=b_{12} \cdot \vec{e}_{1}+b_{22} \cdot \vec{e}_{2} \\
\downarrow_{11} \\
a_{21}
\end{array}\right)+b_{21} \cdot\binom{a_{12}}{a_{22}}
$$

So the matrix for $C=A \cup B$ is

$$
\left(\begin{array}{ll}
a_{11} \cdot b_{11}+a_{12} \cdot b_{21} & a_{11} \cdot b_{12}+a_{12} \cdot b_{22} \\
a_{k 1} \cdot b_{11}+a_{22} \cdot b_{21} & a_{21} \cdot b_{12}+a_{22} \cdot b_{22}
\end{array}\right)
$$

Def: Given $B \in M_{m \times n}, A \in M_{r \times m}$ we define.
$A \cdot B \quad$ by $\quad(A \cdot B)_{i j}=\sum_{k=1}^{m} A_{i k} \cdot B_{k j}$.
We define matrix multiplication to catch the matrix for compositions.

Operations for Matrix (Matrix Algebra) $A \in M_{m \times n} \quad B \in M_{m \times n}$

$$
\pm:(A \pm B)_{i j}=A_{i j \pm} B_{i j}
$$

scalar unttipliation: $(k \cdot A)_{i j}=k \cdot A_{i j}$
If. $A \in M_{n \times n} \quad B \in M_{n \times r}$ then
matrix multiplication: $(A \cdot B)_{i j}=\sum_{k} A_{i k} \cdot B_{k j}$
For spare matrix, we can define all of then for any two matrix $A, B \in M_{n \times n}$.

Property of Matrix Maultipliation:

1) $\quad A \cdot(B \cdot C)=(A \cdot B) \cdot C$
2) $A \cdot(B+C)=A \cdot B+A \cdot C$
3) $(B+C) \cdot A=B A+C \cdot A$.
4) $r \cdot(A \cdot B)=(r A) \cdot B=A \cdot(r B)$
5) $\operatorname{Im} \cdot A=A=A \cdot I_{n}$
pf. 11.

$$
\begin{aligned}
{[A \cdot(B \cdot C)]_{i j} } & =\sum_{k} A_{i k} \cdot(B \cdot C)_{k j} \\
& =\sum_{k} A_{i k} \cdot \sum_{l} B_{k e} \cdot C_{e j} \\
& =\sum_{k, l} A_{i k} \cdot B_{k l} \cdot C_{e j} \\
{[(A \cdot B) \cdot C]_{i j} } & =\sum_{l}(A \cdot B)_{i e} \cdot C_{e j} \\
& =\sum_{l} \sum_{k} A_{i k} \cdot B_{k e} \cdot C_{e j}
\end{aligned}
$$

2）3）4）．exencise
Rmk：（1）$I_{m} \cdot A=A$ ．
（2）Cherk that
$A \cdot \vec{x}$（in the sense of matrix vector muttipliation） equals $A \cdot \vec{x}($ in the sense of matrix muttiplication）

$$
\begin{aligned}
& \text { (3). } A B \neq B A \\
& \left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)
\end{aligned} \begin{aligned}
&=\left(\begin{array}{cc}
\mid \times 1+a \times b & 1 \times 0+a \times 1 \\
b & 1
\end{array}\right) \\
&=\left(\begin{array}{cc}
1+a b & a \\
b & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a \\
b & 1+a b
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \underset{\text { 分 }}{ } A B=A C \stackrel{x}{\Rightarrow} B=C \\
& A \cdot(B-C)=0 \quad \text { 分 } B-C=0 \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{cc}
b_{21} & b_{22} \\
0 & 0
\end{array}\right) \\
& \begin{array}{r}
\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right) \\
\uparrow \\
A
\end{array}
\end{aligned}
$$

$B \neq C$ in general．

$$
\begin{aligned}
& \text { (5). } A \cdot B=0 \stackrel{x}{\Rightarrow} A=0 \text { or } B=0 . \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

