Week 4 Thursday.
Recall from last time:

$$
(A \cdot B)_{i j}=\sum_{k} A_{i k} \cdot B_{k j}=\left(\begin{array}{c}
A_{i 1} \\
A_{i 2} \\
\vdots \\
A_{i n}
\end{array}\right) \cdot\left(\begin{array}{c}
B_{1 j} \\
B_{2 j} \\
\vdots \\
B_{n j}
\end{array}\right)
$$

$A \cdot B=A \cdot C$ then $\stackrel{x}{\Rightarrow} B=C$
if $a \cdot b=a \cdot c$ for $a, b, c \in \mathbb{R}$. then. again we do not know $b=c$, but if $a \neq 0$ then multiply by $\frac{1}{a}=a^{-1}$ on both sides.

$$
\Rightarrow \quad b=c .
$$

For matrix, we also give a analogous condition for cancellation to hold, that is, invertible.
Def. Given $A \in M_{n \times n}$. if. $A \cdot B=B \cdot A=I$. then.
B is called A^{-1} and we say A is invertible.
Q 1: Is inverse inigne?
If B_{1}, B_{2} are both inverses of A.

$$
\begin{aligned}
& B_{1} \cdot A=A \cdot B_{1}=I \\
& B_{2} \cdot A=A \cdot B_{2}=I \\
& A \cdot\left(B_{1}-B_{2}\right)=0 \Rightarrow B_{1} \cdot A \cdot\left(B_{1}-B_{2}\right)=0 \Rightarrow B_{1}-B_{2}=0
\end{aligned}
$$

Property
(1) Yes! The inverse is unique.
(2): If A and B are both invertible, then.
$A \cdot B$ is also invertible.

$$
\left.\begin{array}{l}
(A \cdot B) \cdot\left(B^{-1} \cdot A^{-1}\right)=I \\
\left(B^{-1} \cdot A^{-1}\right) \cdot(A \cdot B)=I
\end{array}\right\} \Rightarrow(A \cdot B)^{-1}=B^{-1} \cdot A^{-1} .
$$

(3)

$$
\begin{aligned}
\left(A^{-1}\right)^{-1} & =A \\
A \cdot A^{-1} & =I \\
A^{-1} \cdot A & =I .
\end{aligned}
$$

Recall matrix multiplication gives the matrix for Composition of linear transformations. say if

$$
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}
$$

is linear with. standard matrix A.
then. A is invertible if and only it T is infective and surjective.

$$
\begin{aligned}
& \exists B \text { sit. } B \cdot A=A \cdot B=I \\
\Leftrightarrow & \exists S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { s.t } \quad \text {. } 0 T=T 0 S=i d . \\
\Leftrightarrow & S=T^{-1} \text { as a map. }
\end{aligned}
$$

So this provide us with a way to cheek whether A is invertible.
eg. $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \quad \begin{aligned} & \text { To check } A \text { is infective or not } \\ & \text { we solve the linear system. }\end{aligned}$

$$
A \cdot \vec{x}=\overrightarrow{0} \quad\left(\begin{array}{cc:c}
1 & 2 & 0 \\
3 & 4 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
\square & 2 & 0 \\
0 & -2 & 0
\end{array}\right)
$$

no pee variable, so A is invertible. To check suriutive: for any $\vec{y} \in \mathbb{R}^{2}$

$$
A \cdot \vec{x}=\vec{y} \quad\left(\begin{array}{cc:c}
1 & 2 & y_{1} \\
3 & 4 & y_{2}
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
{[1} & 2 & * \\
0 & -2 & *
\end{array}\right)
$$

Q: Is it possible to final $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ s.t A is infective but not surjectiv?
Tho. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear then T is infective $\Leftrightarrow T$ is surjectiv.
Pf: The matrix for T, call it by A. the echelon form for A has no free variables. implies that. it looks like.

So there are no "pivot for the last colecm. This shows

$$
\text { in } \Rightarrow \text { sur. }
$$

Sw $j \Rightarrow$ in j : In order for $A \cdot \vec{x}=\vec{y}$ to be consistent, we need the cast colter free of pirat. Since \vec{y} is arbitrary. we must have I being a pinot. So the echelon
form must look like above.

$$
\begin{gathered}
\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
3\left(\begin{array}{c}
2 \\
\\
\\
\end{array}\right)
\end{gathered}
$$

$$
\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

$$
2\left(\begin{array}{l:l}
\square & \square \\
& \square
\end{array}\right)
$$

cannot be surjectie cannot be infective.
In linear system perspective:
Application for A^{-1} :

$$
A \cdot \vec{x}=\vec{b}
$$

if A is invertible and. A^{-1} is the inverse. then. multiply A^{-1} on bock sides.

$$
\begin{aligned}
A^{-1} \cdot A \cdot \vec{x} & =A^{-1} \cdot \vec{b} \\
\Rightarrow \quad \vec{x} & =A^{-1} \cdot \vec{b}
\end{aligned}
$$

Computation for A^{-1}.

$$
\left.\begin{array}{ll}
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & b^{-1}
\end{array}\right) & \left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)^{-1} \dot{\bar{X}}\left(\begin{array}{cc}
1^{-1} & 1^{-1} \\
1-1 & 1-1
\end{array}\right) \\
\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \cdot\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & b^{-1}
\end{array}\right)=I . \\
\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & b^{-1}
\end{array}\right) \cdot\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=I . & \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right),
$$

One way suggested:

$$
K_{-} A_{i}^{-1},
$$

Determine the preinage of $\vec{e}_{i}=\left(\begin{array}{l}0 \\ \vdots \\ \vdots \\ 0 \\ \vdots\end{array}\right) \leftarrow i$ th, under the nap A. that is equivalent to solving $A \cdot \vec{x}=\vec{e}_{i}$. suppose the solution is \vec{x}; then

$$
A^{-1}=\left(\begin{array}{cccc}
\downarrow & \downarrow & \cdots & \downarrow \\
x_{1} & x_{2} & & x_{n}
\end{array}\right)
$$

(Another way later we will see determinat).
Row operation for matrix is equivalent to certain matrix multipliation.
e. $A=\binom{\xrightarrow[\vdots]{r_{1}}}{\xrightarrow{r_{k}}} \quad \tilde{A}=\left(\begin{array}{c}\xrightarrow[r_{2}+\lambda \cdot r_{1}]{r_{1}} \\ \vdots \\ \xrightarrow{r_{k}}\end{array}\right)$

$$
\left(\begin{array}{ccc}
1 & & 0 \\
\lambda & 1 & \\
0 & 1 & \\
0 & 1 & 1
\end{array}\right)\binom{\xrightarrow{r_{1}}}{\begin{array}{|c}
r_{2} \\
r_{k} \\
\hline
\end{array}}
$$

By a sequence of row operations (equiralatly left multiplication by sone invertible matrix). We get the echeloform of A.ie. it
$R_{e} \cdots R_{2} R_{1} A=I$. then.
A. $\vec{x}_{i}=\vec{e}_{i}$ has the solution that.

$$
\begin{gathered}
\vec{x}_{i}=R_{1} \cdot R_{e-1} \ldots R_{2} R_{1} \cdot \vec{e}_{i} \\
\left(\begin{array}{ccccc}
\\
A & \vdots & 0 & 0 & \\
0 \\
& 0 & 0 & 1 & \cdots \\
& \vdots & \vdots & \vdots & \\
& & 0 & 0 & 0 \\
&
\end{array}\right)
\end{gathered}
$$

In
Find sow operations $R e \cdot R_{e-1} \cdots R_{2} R$, st.

$$
A \xrightarrow{R_{1}} A_{1} \xrightarrow{R_{2}} A_{2} \rightarrow \cdots \rightarrow I
$$

then. carry $R_{e} \cdot R_{e-1} \ldots R_{2} R_{\text {, }}$ in the same way to I_{n}, we will get A^{-1} when LHS become I.

$$
\begin{aligned}
& \left(\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right) \xrightarrow{(2 \rightarrow(2)} \text {-(1) } \times 3\left(\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\
0 & -2 & -3 & 1
\end{array}\right) \\
& \text { A } \\
& \xrightarrow{(2) \leadsto(2) /-2}\left(\begin{array}{ll|cc}
1 & 2 & 1 & 0 \\
0 & 1 & \frac{3}{2} & -\frac{1}{2}
\end{array}\right) \xrightarrow{(1) \rightarrow(1)-(2) \times 2}\left(\begin{array}{ll|ll}
1 & 0 & -2 & 1 \\
0 & 1 & \frac{3}{2} & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

