Problem 1: Evaluating Limit

Determine the limit of the following function f(x) at the given point:

$$\begin{array}{c} \text{pluy}^{\text{in}} \rightarrow 1. \ x-1, x^2, e^x, \sin x, \cos x \text{ at } x=a \\ 2. \ e^{x^2-x+2} \text{ at } x=1 \ e^2 \\ 3. \ \frac{x^2-3x+2}{x-1} \text{ at } x=1 \ -1 \ \text{Factor} \ x^2-3x+2=(x-2)(x-1) \\ 4. \ \frac{\sqrt{x^2+1-1}}{x} \text{ at } x=0 \ 0 \ \text{Multiply} \ \sqrt{x^2+1} \ +1 \ \text{on both top and bottom} \\ 5. \ \frac{\sin(2x)}{\sin(2x)} \text{ at } x=0 \ (\text{Hint: } \sin(2x)=2\sin x\cos x) \ 2 \\ 6. \ \frac{1-\frac{1}{4}}{1-\frac{1}{x^2}} \text{ at } x=0 \ 0 \ \text{Multiply} \ x^2 \ \text{on top } \& bottom \\ 7. \ \ln(1+x^2) \text{ at } x=0 \ 0 \\ 8. \ \frac{x^{n-1}}{x-1} \text{ at } x=1 \ (\text{Hint: } x^n-1=(x-1)(x^{n-1}+x^{n-2}+\dots+1)) \ n \\ 9. \ \frac{x^{1}-1}{x-2} \text{ at } x=2 \ -1 \ \text{Multiply} \ x-1 \ \dots \\ 10. \ \sin x \cos x \text{ at } x=0 \ 0 \\ 11. \ \frac{x^{-4}}{\sqrt{x-2}} \text{ at } x=4 \ 4 \ \text{Multiply} \ \sqrt{x} +2 \ \dots ; \ 0x \ \text{Factor} \ x-4=(\sqrt{x}+2) \\ (\sqrt{x}-2) \\ 12. \ \frac{x^{2}-1}{x^{3}-1} \text{ at } x=1 \ \frac{2}{3} \ \text{Factor} \ \text{like} \ (\& \$$$

Problem 2: Evaluate Left/Right Limit

"Plug in Determine the limit of the following function at the given point:

Find S10
$$\frac{x^3 - 2x - 1}{x + 1}$$
 at $x = 1$ from the left -1
near $x = 2$ $\frac{|x - 1|}{x - 2} = \frac{x - 1}{x - 2}$
3. $\frac{\sqrt{x - 1}}{x - 1}$ at $x = 2$ from the left $-\infty$
4. $\ln(x^2 + 2x)$ at $x = 0$ from the right $-\infty$
5. $\frac{|(1 + x)^2 - 1|}{x}$ at $x = 0$ from the left -2
6. $e^{x - 1/x}$ at $x = 0$ from the left 0
7. $\cos(1/x)$ at $x = 0$ from the left DNE
8. $1/\ln(x)$ at $x = 0$ from the right 0

Problem 3: Infinite Limit Determine the vertical asymptote for the following function and write down a infinite limit (right/left/positive/negative) as the reason:

1.	$\frac{x+1}{x-1}$	K=	lim x->1+	$f(x) = +\infty$		$\lim_{X \to 1^-} f(x) = -\infty$
2.	$\ln(\frac{x+1}{x-1})$	x=-1	lim_ x→-1	$f(x) = -\infty$	•	
3.	$\frac{x-2}{x^2-4}$	X =-2	lim x→-2	f(x) = +0	Ø	$\lim_{X \to -2} f(X) = -\infty$
4.	$e^{\frac{x-2}{x^2-4}}$	X=-2	lim x-> -2+	f(x)= +6	\sim	
5.	$\sqrt{\frac{x}{x-1}}$	X=)	lim X->1+	f(x) = + "	\sim	
6.	$\ln(\sin x)$	X=2k元		lim +	f(x)	= - 00
		2k无+	え	×→2k元'		
				lim ×→(2kz+≂	5 ^f	X)=- ∞

Problem 4: Pattern Recognition Look at the graph of the following graph for f(x) and determine the answer:

