Problem 1: More on derivatives and limit Determine the derivative and second order derivatives of the following functions:

1. $f(x)=x^{100} \cdot \sin x$

$$
\begin{aligned}
f^{\prime}(x)= & x^{100} \cdot \cos x+100 x^{99} \sin x \\
f^{\prime \prime}(x) & =100 x^{99} \cdot \cos x-x^{100} \sin x+100 \cdot 99 \cdot x^{98} \sin x \\
& +100 \cdot x^{99} \cdot \cos x
\end{aligned}
$$

2. $f(x)=\sin x \cos ^{2} x$
3. $f(x)=\frac{x^{2}-2 x+1}{\sqrt{x}}$
4. $f(x)=\sin (2 x)$ (Use definition of derivatives)
5. $f(x)=\sqrt{x+1}$ (Use definition of derivatives)
6. $f^{\prime}(x)=\cos ^{3} x-2 \sin ^{2} x \cdot \cos x$

$$
\text { 4. } f^{\prime}(a)=\lim _{x \rightarrow a} \frac{\sin 2 x-\sin 2 a}{2(x-a)} \cdot 2
$$

$$
f^{\prime \prime}(x)=-7 \sin x \cdot \cos ^{2} x+2 \sin ^{3} x
$$

3. $f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-x^{-\frac{1}{2}}-\frac{1}{2} \cdot x^{-\frac{3}{2}}$

$$
=2 . \lim _{y \rightarrow 2 a} \frac{\sin y-\sin 2 a}{y-2 a}=2 \cdot \cos (2 a)
$$

$$
f^{\prime \prime}(x)=\frac{3}{4} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}+\frac{3}{4} x^{-\frac{5}{2}}
$$

$\begin{aligned} f^{\prime \prime}(x) & =-4 \sin (2 x) \\ \text { 5. } f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{\sqrt{x+1}-\sqrt{a+1}}{x-a}\end{aligned}$

$$
=\lim _{y \rightarrow a+1} \frac{\sqrt{y}-\sqrt{a+1}}{y-(a+1)}
$$

$$
=\frac{1}{2} \cdot(a+1)^{-\frac{1}{2}}
$$

Problem 2: Tangent line
Determine the tangent lines of the following functions at the given points.

1. $f(x)=\frac{x^{2}-1}{x}$ at $x=2$

$$
f^{\prime \prime}(x)=-\frac{1}{4} \cdot(x+1)^{-\frac{3}{2}}
$$

2. $f(x)=\frac{\sin x+\cos x}{x}$ at $x=\pi / 2$
3. $f(x)=\frac{1}{x^{2}+1}$ at $x=1$

$$
\frac{-1}{\left(x^{2}+1\right)^{2}} \cdot 2 x
$$

4. $f(x)=\left\{\begin{array}{l}x^{2}+3 x+2, x<1 \\ 5 x+1, x \geq 1\end{array} \quad\right.$ at $x=1$
5. $y-\frac{3}{2}=\frac{5}{4} \cdot(x-2)$
6. $y-\frac{2}{\pi}=\frac{-4-2 \pi}{\pi^{2}} \cdot\left(x-\frac{\pi}{2}\right)$
7. $y-\frac{1}{2}=-\frac{1}{2}(x-1)$
8. $y-6=5 \cdot(x-1)$

Problem 3: Linear Approximation
Use linear approximation to estimate the following function value.

1. $\sqrt{3.99999}$

$$
\approx 1.9999975
$$

2. $(1.00001)^{2022} \approx 1.02022$
3. $\frac{1}{1.00001} \approx 0.99999$
4. $\sin (0.2500001 \pi) \approx \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \times 0.0000001 \times \pi$
5. $\tan (0.333333 \pi) \approx \sqrt{3}-\frac{4}{3} \times 10^{-6} \times \pi$

Problem 4: Application of Derivatives

1. A bug is crawling on the x-axis following the function $x(t)=t^{3}+3 t^{2}-9 t$. Determine the velocity of the bug? When is the bug starts to turn back? (Assuming $t \geq 0$)
2. An ant is moving on the x-axis with $s(t)=2 t^{3}-3 t^{2}-12 t+8$. Determine the time intervals when the ant is slowing down or speeding up.
3. A ball is thrown up vertically with an initial velocity $v=100$. The height of the ball is $h(t)=-16 t^{2}+100 t$. Determine when the ball is highest? Determine the velocity for the ball when it hits the ground?
4.

$$
w(t)=3 t^{2}+6 t-9
$$

So it starts to turn back at $t=1$.

$$
\begin{aligned}
& v(t)=0 \text { when } t=1 \text { or } \\
& v(t)=6 t^{2}-6 t-12 \\
& {\left[0, \frac{1}{2}\right] \cup[2,+\infty) \text { speed up }} \\
& {\left[\frac{1}{2}, 2\right] \text { slow down }}
\end{aligned}
$$

3. $t=\frac{25}{8}$

$$
h(t)=0 \text { when } t=\frac{25}{4} \quad v^{\prime}(t)=-32 t+100 \quad \begin{aligned}
& \text { down warts } \\
& v^{\prime}\left(\frac{25}{4}\right)=-100 \quad v=100
\end{aligned}
$$

