Problem 1: Surface Integral Part 1: Area, Mass

Given the sphere $\vec{x}(\theta, \phi)=\left(\begin{array}{c}R \sin \phi \cos \theta \\ R \sin \phi \sin \theta \\ R \cos \phi\end{array}\right), 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$,

1. What is the normal vector $\vec{x}_{\theta} \times \vec{x}_{\phi}$?
2. What is the area by surface integral?
3. What is the unit normal?
4. Suppose the density function $\mu(\theta, \phi)=\cos ^{2} \theta$, compute the total mass of the this unit sphere?
5. What is the average z-coordinate for the upper sphere, i.e., $z \geq 0$?

Problem 2: Surface Integral Part 2: Flux

Consider the same sphere as in part 1 with outward normal,

1. Given the vector field $\vec{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, compute the flux?
2. Given the vector field $\vec{v}=\left(\begin{array}{c}y \\ -x \\ z\end{array}\right)$, compute the flux?

Problem 3: Divergence Theorem

Consider the same question in part 2 using divergence theorem

1. Problem 2.1
2. Problem 2.2
3. Given the vector field $\vec{v}=\left(\begin{array}{l}y z \\ x z \\ x y\end{array}\right)$, what is the flux?

Problem 4: Stokes Theorem

Consider the same sphere, and take γ to be the boundary of the upper sphere with counterclockwise condition,

1. Given the vector field $\vec{F}=\left(\begin{array}{c}b z-c y \\ c x-a z \\ a y-b x\end{array}\right)$, use Stoke's theorem to compute $\int_{\gamma} \vec{F} \cdot d \vec{s}$.
2. Consider γ is the triangle with vertex to be $(1,0,0),(0,1,0)$ and $(0,0,1)$, and

$$
\vec{F}=\left(\begin{array}{l}
x+y^{2} \\
y+z^{2} \\
z+x^{2}
\end{array}\right), \text { what is } \int_{\gamma} \vec{F} \cdot d \vec{s} ?
$$

