Homework 1, Math 401

due on January 13, 2020

Before you start, please read the syllabus carefully.

1. Given (G, \cdot) a group. Prove the following:
(a) There exists a unique element $e \in G$ such that $e \cdot a=a \cdot e=a$ for any element $a \in G$. $\left.{ }^{*}\right)$ We call this element identity
(b) For any element $a \in G$, there exists a unique $b \in G$ such that $a \cdot b=b \cdot a=e .\left({ }^{*}\right) \mathrm{We}$ call this element inverse of a, and denote it by a^{-1}
(c) If $a \cdot c=b \cdot c$, then $a=b$ (cancellation law)
(d) $\left(a^{-1}\right)^{-1}=a$
(e) $(a \cdot b)^{-1}=b^{-1} \cdot a^{-1}$
2. Given $(R,+, \cdot)$ a ring. We will denote the identity with respect to " + " by 0 , and the identity respect to "." by 1 , the inverse of $a \in R$ with respect to " + " by $-a$. Prove the following:
(a) $0 \cdot a=a \cdot 0=0$
(b) $-a=(-1) \cdot a$
(c) $-(-a)=a$
3. Prove the following:
(a) $(\mathbb{Z},+, \times)$ forms a ring.
(b) $(\mathbb{R},+, \times)$ forms a ring.
(c) $(\mathbb{Q},+, \times)$ forms a ring.
(d) $(\mathbb{C},+, \times)$ forms a ring.

Here + and \times are interpreted as the usual addition and multiplication for each set. \mathbb{Z} means integers, \mathbb{R} means real numbers, \mathbb{Q} means rational numbers, \mathbb{C} means complex numbers.
4. Prove that $\left(M_{n \times n}(\mathbb{R}),+, \times\right)$ forms a ring. Here $M_{n \times n}(\mathbb{R})$ is the set of all n-by- n matrices over real numbers \mathbb{R}. Here + and \times are interpreted as the usual addition and multiplication for matrices.
5. Determine whether:
(a) $(\mathbb{Z} \backslash\{0\}, \times)$ forms a group?
(b) $(\mathbb{R} \backslash\{0\}, \times)$ forms a group?
(c) $(\mathbb{Q} \backslash\{0\}, \times)$ forms a group?
(d) $(\mathbb{C} \backslash\{0\}, \times)$ forms a group?

If yes, give a proof; if no, explain why.
6. Determine whether:
(a) $\left(M_{n \times n}(\mathbb{R}) \backslash\{0\}, \times\right)$ forms a group?
(b) $\left(M_{n \times n}(\mathbb{Z}) \backslash\{0\}, \times\right)$ forms a group?

Here 0 means zero matrix. If yes, give a proof; if no, explain why.
(Bonus): If no, come up with a set of matrices that forms a group with respect to usual multiplication for matrices.
7. Given $(R,+, \cdot)$ a ring. Do we have cancellation law for \cdot, i.e, if $a \cdot c=b \cdot c$, do we have $a=b$? If yes, give a proof; if no, explain why.
8. Given $(R,+, \cdot)$ a ring. Show that if there exists an inverse of 0 with respect to ".", i.e., if there exists $x \in R$ such that $x \cdot 0=0 \cdot x=1$, then R contains only one element.
$\left.{ }^{*}\right)$ We say that such a ring is trivial. This exercise shows why we do not have $\frac{a}{0}$.

