Homework 2, Math 401

due on January 22, 2020

Before you start, please read the syllabus carefully.

Given a ring $(R, +, \cdot)$, we always use 0_R and 1_R to denote the identity w.r.t + and \cdot . When there is no confusion, we will simply write 0 and 1.

Recall the definition of homomorphisms. A map $f : A \to B$ between two groups is called a group homomorphism if $f(a_1 + a_2) = f(a_1) + f(a_2)$. A map $f : A \to B$ between two rings is called a ring homomorphism if: $f(a_1 + a_2) = f(a_1) + f(a_2)$ and $f(a_1 \cdot a_2) = f(a_1) \cdot f(a_2)$ and f(1) = 1.

- 1. Read section 1.1 on proof by induction in case you haven't seen this before.
- 2. Given a ring $(R, +, \cdot)$ with 1_R and 0_R to be the identity w.r.t \cdot and +. Define

$$(-1)_R := -1_R,$$

and inductively for k > 1 that

$$k_R := (k-1)_R + 1_R, \qquad (-k)_R := (-k+1)_R + (-1)_R$$

Define the map $f : \mathbb{Z} \to R$ from the ring of integers to R to be $f(n) = n_R \in R$. Prove that f is a ring homomorphism. (Hint: use induction somewhere).

3. Prove that $(\mathbb{Q} \setminus \{1\}, \oplus)$ is a group where

$$a \oplus b := a + b - a \times b.$$

- 4. Denote the group $A = (\mathbb{Q} \setminus \{1\}, \oplus)$ and $B = (\mathbb{Q} \setminus \{0\}, \times)$. Define $f : A \to B$ that f(a) = 1 a. Prove that f is a group homomorphism.
- 5. Denote the group A = (ℝ, +) and B = (ℝ\{0}, ×). Prove that the usual exponential map exp : A → B is a group homomorphism.
 Bonus: Can you define a group homomorphism g : B → A such that g ∘ f : A → A is identity? If yes, write down the definition of g. If no, explain why.
- 6. (a) Find all group homomorphisms from (Z, +) to itself.
 (b) Find all ring homomorphisms from (Z, +, ×) to itself.
- 7. Find all elements of \mathbb{Z}_m that can be written as a^2 for some $a \in \mathbb{Z}_m$ for:
 - (a) m = 5
 - (b) m = 6
 - (c) m = 9

- 8. Find all units of \mathbb{Z}_m for:
 - (a) m = 5
 - (b) m = 6
 - (c) m = 9
- 9. Find all zero-divisors of \mathbb{Z}_m for:
 - (a) m = 5
 - (b) m = 6
 - (c) m = 9
- 10. Say an integer n is written in the decimal expression $n = \sum_{0 \le i \le n} a_i 10^i$. Prove that $3|n \iff 3|\sum_i a_i$.
- 11. For fun (not required as a homework): Given an integer n. For every prime number p, there exists an integer r_p such that $n \equiv r_p^2 \pmod{p}$. Does that imply that $n = r^2$ for some integer r? If yes, give a proof. If no, give a counter example.