Homework 2, Math 401

due on January 22, 2020

Before you start, please read the syllabus carefully.
Given a ring $(R,+, \cdot)$, we always use 0_{R} and 1_{R} to denote the identity w.r.t + and \cdot. When there is no confusion, we will simply write 0 and 1 .

Recall the definition of homomorphisms. A map $f: A \rightarrow B$ between two groups is called a group homomorphism if $f\left(a_{1}+a_{2}\right)=f\left(a_{1}\right)+f\left(a_{2}\right)$. A map $f: A \rightarrow B$ between two rings is called a ring homomorphism if: $f\left(a_{1}+a_{2}\right)=f\left(a_{1}\right)+f\left(a_{2}\right)$ and $f\left(a_{1} \cdot a_{2}\right)=f\left(a_{1}\right) \cdot f\left(a_{2}\right)$ and $f(1)=1$.

1. Read section 1.1 on proof by induction in case you haven't seen this before.
2. Given a ring $(R,+, \cdot)$ with 1_{R} and 0_{R} to be the identity w.r.t \cdot and + . Define

$$
(-1)_{R}:=-1_{R},
$$

and inductively for $k>1$ that

$$
k_{R}:=(k-1)_{R}+1_{R}, \quad(-k)_{R}:=(-k+1)_{R}+(-1)_{R} .
$$

Define the map $f: \mathbb{Z} \rightarrow R$ from the ring of integers to R to be $f(n)=n_{R} \in R$. Prove that f is a ring homomorphism. (Hint: use induction somewhere).
3. Prove that $(\mathbb{Q} \backslash\{1\}, \oplus)$ is a group where

$$
a \oplus b:=a+b-a \times b .
$$

4. Denote the group $A=(\mathbb{Q} \backslash\{1\}, \oplus)$ and $B=(\mathbb{Q} \backslash\{0\}, \times)$. Define $f: A \rightarrow B$ that $f(a)=$ $1-a$. Prove that f is a group homomorphism.
5. Denote the group $A=(\mathbb{R},+)$ and $B=(\mathbb{R} \backslash\{0\}, \times)$. Prove that the usual exponential map $\exp : A \rightarrow B$ is a group homomorphism.
Bonus: Can you define a group homomorphism $g: B \rightarrow A$ such that $g \circ f: A \rightarrow A$ is identity? If yes, write down the definition of g. If no, explain why.
6. (a) Find all group homomorphisms from $(\mathbb{Z},+)$ to itself.
(b) Find all ring homomorphisms from $(\mathbb{Z},+, \times)$ to itself.
7. Find all elements of \mathbb{Z}_{m} that can be written as a^{2} for some $a \in \mathbb{Z}_{m}$ for:
(a) $m=5$
(b) $m=6$
(c) $m=9$
8. Find all units of \mathbb{Z}_{m} for:
(a) $m=5$
(b) $m=6$
(c) $m=9$
9. Find all zero-divisors of \mathbb{Z}_{m} for:
(a) $m=5$
(b) $m=6$
(c) $m=9$
10. Say an integer n is written in the decimal expression $n=\sum_{0 \leq i \leq n} a_{i} 10^{i}$. Prove that $3|n \Longleftrightarrow 3| \sum_{i} a_{i}$.
11. For fun (not required as a homework): Given an integer n. For every prime number p, there exists an integer r_{p} such that $n \equiv r_{p}^{2}(\bmod p)$. Does that imply that $n=r^{2}$ for some integer r ? If yes, give a proof. If no, give a counter example.
