Homework 3, Math 401

due on February 3, 2020

Before you start, please read the syllabus carefully.
We define $\operatorname{gcd}(m, n)$ to be the unique positive integer satisfying: 1) $d \mid m, n$ implies that $d \mid \operatorname{gcd}(m, n) ; 2) \operatorname{gcd}(m, n) \mid m, n$.

1. Prove that the uniqueness of $\operatorname{gcd}(m, n)$ follows from the definition of $\operatorname{gcd}(m, n)$.
2. Prove that for any two integers m, n (not necessarily positive), $\operatorname{gcd}(m, n)=1$ if and only if there exist integers a and b such that $a \cdot m+b \cdot n=1$. (Use Euclidean algorithm.)
3. Prove that a non-zero element in \mathbb{Z}_{m} is either a unit or a zero-divisor. Deduce the number of units for \mathbb{Z}_{m} when:
(a) $m=p$ where p is a prime number
(b) $m=p^{r}$ where p is a prime number
(c) $m=p_{1} \cdot p_{2}$ where $p_{1} \neq p_{2}$ are prime numbers
4. For a general ring R, is it true that a non-zero element in R is either a unit or a zero-divisor? If yes, give a proof; if no, give a counter example.
5. Let R be an integral domain having a finite number of elements. Prove R is a field. (Ex 12 in 1.4)
6. Let R be a ring (not necessarily commutative). Given that a, b and $a+b \in R$ are all units, prove that $a^{-1}+b^{-1}$ is a unit.
7. Consider the polynomial rings with coefficient in \mathbb{Z}_{5}. Do the division algorithms (i.e. find $q(x)$ and $r(x)$ in $\mathbb{Z}_{5}[x]$ such that $\left.f(x)=g(x) q(x)+r(x)\right)$:
(a) $f(x)=3 x^{3}-2 x^{2}+1, \quad g(x)=2 x+1$;
(b) $f(x)=x^{5}-1 \quad g(x)=x-1$.
8. Consider the polynomial rings with coefficient in \mathbb{Q}. Do the division algorithms:
(a) $f(x)=3 x^{3}-2 x^{2}+1, \quad g(x)=2 x+1$;
(b) $f(x)=x^{5}-1, \quad g(x)=x-1$.
$\left(^{*}\right):$ Can you see from this exercise why we do not do division algorithm for $\mathbb{Z}[x]$?
9. Prove that $\mathbb{Q}[\sqrt{2}]$ is a field. The set contains all elements in the form of $a+b \sqrt{2}$ where a and b are in \mathbb{Q}. The addition and multiplication is defined as the same addition and multiplication in real numbers.
10. Given two ideals $I=\langle f(x)\rangle$ and $J=\langle g(x)\rangle$, porve that $I \subset J$ if and only if $g(x) \mid f(x)$.
11. Find all possible ring homomorphisms from A to B :
(a) $A=\mathbb{Z}_{10}, \quad B=\mathbb{Z}$
(b) $A=\mathbb{Z}_{10}, \quad B=\mathbb{Z}_{5}$
(c) $A=\mathbb{Z}_{10}, \quad B=\mathbb{Z}_{3}$
12. Prove that if I and J are ideals, then $I \cap J$ and $I+J$ are both ideals. Here $I \cap J:=\{r \in$ $R \mid r \in I, r \in J\}, I+J:=\{r \in R \mid \exists a \in I, b \in J$ such that $r=a+b\}$.
