Homework 4, Math 401

due on February 10, 2020

Before you start, please read the syllabus carefully.

- 1. Consider $\mathbb{Z}[\sqrt{-1}]$. As a set, it contains all elements in the form of $a + b\sqrt{-1}$ where a and b are in \mathbb{Z} . The addition and multiplication is defined as the same addition and multiplication in complex numbers. Prove that $\mathbb{Z}[\sqrt{-1}]$ is a commutative ring.
- 2. Prove that $\mathbb{Z}[\sqrt{-1}]$ is an integral domain.
- 3. Given a surjective ring homomorphism $\phi : A \to B$ between two commutative rings.
 - (a) Denote J to be an ideal of B. Prove that $\phi^{-1}(J) := \{x \in A \mid \phi(x) \in J\}$ is an ideal of A.
 - (b) Prove that if every ideal of A is principal, then every ideal of B is principle.
- 4. Find all the ideals in the ring of
 - (a) \mathbb{Z}
 - (b) $\mathbb{F}[x]$ where F is a field
 - (c) \mathbb{Z}_p where p is a prime
 - (d) \mathbb{Z}_{pq} where p and q are two different primes.
 - (e) \mathbb{Z}_{p^2} where p is a prime.
- 5. Show that \mathbb{Z}_5 is a quotient ring of \mathbb{Z}_{10} (equivalently, this means that \mathbb{Z}_5 is isomorphic to a quotient ring of \mathbb{Z}_{10}).
- 6. Given R a commutative ring. Prove that $I \cdot J := \{\sum_{1 \le k \le K} i_k \cdot j_k \mid i \in I, j \in J\}$ are still ideals of R where I and J are both ideals of R.
- 7. For the ring of integers \mathbb{Z} , denote $I = \langle m \rangle$ and $J = \langle n \rangle$. You have seen in previous exercises that I + J and $I \cap J$ and $I \cdot J$ are all still ideals for the same ring R. Also you have seen that all ideals of \mathbb{Z} are principle. Find the generator for the following ideal:
 - (a) I + J
 - (b) $I \cap J$
 - (c) $I \cdot J$

Bonus: Which ideal is bigger between $I \cap J$ and $I \cdot J$? Can you guess when $I \cap J = I \cdot J$ for the ring \mathbb{Z} ?

8. Find all ring homomorphisms $\phi : \mathbb{Q}[x] \to \mathbb{Q}$.

- 9. Prove that $\phi_a : F[x] \to F$ by mapping $\phi_a(f(x)) = f(a)$ is a surjective ring homomorphism. Determine $\text{Ker}(\phi_a)$. Show that F is a quotient ring of F[x].
- 10. Given $I = \langle x^2 + 5 \rangle$ an ideal of R = F[x]. Determine R/I as a set, i.e., determine all the equivalence classes mod I.