Homework 4, Math 401

due on February 10, 2020

Before you start, please read the syllabus carefully.

1. Consider $\mathbb{Z}[\sqrt{-1}]$. As a set, it contains all elements in the form of $a+b \sqrt{-1}$ where a and b are in \mathbb{Z}. The addition and multiplication is defined as the same addition and multiplication in complex numbers. Prove that $\mathbb{Z}[\sqrt{-1}]$ is a commutative ring.
2. Prove that $\mathbb{Z}[\sqrt{-1}]$ is an integral domain.
3. Given a surjective ring homomorphism $\phi: A \rightarrow B$ between two commutative rings.
(a) Denote J to be an ideal of B. Prove that $\phi^{-1}(J):=\{x \in A \mid \phi(x) \in J\}$ is an ideal of A.
(b) Prove that if every ideal of A is principal, then every ideal of B is principle.
4. Find all the ideals in the ring of
(a) \mathbb{Z}
(b) $\mathbb{F}[x]$ where F is a field
(c) \mathbb{Z}_{p} where p is a prime
(d) $\mathbb{Z}_{p q}$ where p and q are two different primes.
(e) $\mathbb{Z}_{p^{2}}$ where p is a prime.
5. Show that \mathbb{Z}_{5} is a quotient ring of \mathbb{Z}_{10} (equivalently, this means that \mathbb{Z}_{5} is isomorphic to a quotient ring of \mathbb{Z}_{10}).
6. Given R a commutative ring. Prove that $I \cdot J:=\left\{\sum_{1 \leq k \leq K} i_{k} \cdot j_{k} \mid i \in I, j \in J\right\}$ are still ideals of R where I and J are both ideals of R.
7. For the ring of integers \mathbb{Z}, denote $I=\langle m\rangle$ and $J=\langle n\rangle$. You have seen in previous exercises that $I+J$ and $I \cap J$ and $I \cdot J$ are all still ideals for the same ring R. Also you have seen that all ideals of \mathbb{Z} are principle. Find the generator for the following ideal:
(a) $I+J$
(b) $I \cap J$
(c) $I \cdot J$

Bonus: Which ideal is bigger between $I \cap J$ and $I \cdot J$? Can you guess when $I \cap J=I \cdot J$ for the ring \mathbb{Z} ?
8. Find all ring homomorphisms $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}$.
9. Prove that $\phi_{a}: F[x] \rightarrow F$ by mapping $\phi_{a}(f(x))=f(a)$ is a surjective ring homomorphism. Determine $\operatorname{Ker}\left(\phi_{a}\right)$. Show that F is a quotient ring of $F[x]$.
10. Given $I=\left\langle x^{2}+5\right\rangle$ an ideal of $R=F[x]$. Determine R / I as a set, i.e., determine all the equivalence classes mod I.

