Homework 5, Math 401

due on February 17, 2020

Before you start, please read the syllabus carefully.

1. Prove that given an integer $n = \prod_{1 \le i \le k} p_i^{r_i}$ where p_i are different primes, then

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}}.$$

- 2. In the above question, if $n = p_1 p_2$, determine the isomorphism map $\phi : \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \to \mathbb{Z}_{p_1 p_2}$.
- Prove that the two definitions of I = ⟨α₁, · · · , α_n⟩ are the same:
 1) the minimal ideal contain α_i for all i;
 2) the set {∑_{1≤i≤n} r_iα_i | r_i ∈ R}.
- 4. Given an irreducible polynomial $f(x) \in F[x]$. Prove that $F[x]/\langle f(x) \rangle$ is a field.
- 5. Given $f(x) = x^2 + 5$, determine whether f(x) is irreducible in
 - (a) $\mathbb{Z}_3[x]$
 - (b) $\mathbb{Z}_5[x]$
 - (c) $\mathbb{Z}_7[x]$
- 6. Prove that $\mathbb{Z}_3[x]/\langle x^2+5\rangle \simeq \mathbb{Z}_3 \times \mathbb{Z}_3$.
- 7. We have learnt that $F = \mathbb{Q}[\sqrt{2}]$ is a field extension of \mathbb{Q} . Determine whether $x^2 + 5 \in F[x]$ is irreducible.
- 8. Prove by induction that it follows from Fundamental Theorem of Algebra that every $f(x) \in \mathbb{C}[x]$ can be written into a product of linear polynomials in $\mathbb{C}[x]$.