Homework 5, Math 401

due on February 17, 2020

Before you start, please read the syllabus carefully.

1. Prove that given an integer $n=\prod_{1 \leq i \leq k} p_{i}^{r_{i}}$ where p_{i} are different primes, then

$$
\mathbb{Z}_{n} \simeq \mathbb{Z}_{p_{1}^{r_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{r_{k}}}
$$

2. In the above question, if $n=p_{1} p_{2}$, determine the isomorphism map $\phi: \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \rightarrow \mathbb{Z}_{p_{1} p_{2}}$.
3. Prove that the two definitions of $I=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle$ are the same:
1) the minimal ideal contain α_{i} for all i;
2) the set $\left\{\sum_{1 \leq i \leq n} r_{i} \alpha_{i} \mid r_{i} \in R\right\}$.
4. Given an irreducible polynomial $f(x) \in F[x]$. Prove that $F[x] /\langle f(x)\rangle$ is a field.
5. Given $f(x)=x^{2}+5$, determine whether $f(x)$ is irreducible in
(a) $\mathbb{Z}_{3}[x]$
(b) $\mathbb{Z}_{5}[x]$
(c) $\mathbb{Z}_{7}[x]$
6. Prove that $\mathbb{Z}_{3}[x] /\left\langle x^{2}+5\right\rangle \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
7. We have learnt that $F=\mathbb{Q}[\sqrt{2}]$ is a field extension of \mathbb{Q}. Determine whether $x^{2}+5 \in F[x]$ is irreducible.
8. Prove by induction that it follows from Fundamental Theorem of Algebra that every $f(x) \in$ $\mathbb{C}[x]$ can be written into a product of linear polynomials in $\mathbb{C}[x]$.
