Homework 6, Math 401

due on March 2, 2020

Before you start, please read the syllabus carefully.

- 1. Consider the field extension $\mathbb{Z}_3 \subset F = \mathbb{Z}_3[x]/\langle x^2 2 \rangle$.
 - (a) Write down the elements in F.
 - (b) Write down the multiplication table for the group of units F^* .
 - (c) Find all ring homomorphism from F to F.
- 2. Consider the field extension $\mathbb{Z}_5 \subset F = \mathbb{Z}_5[x]/\langle x^2 2 \rangle$. Is $f(T) = T^2 3$ irreducible in F? What is the splitting field of $f(T) \in F[T]$?
- 3. Consider the field $F = \mathbb{Z}_5$. How many monic irreducible quadratic polynomials (meaning leading coefficient 1) are there in F[x]?
- 4. Consider $f(x) = x^3 x + 1 \in \mathbb{Z}_3[x]$.
 - (a) Is f(x) irreducible?
 - (b) Prove that if $f(\alpha) = 0$, then $f(\alpha + 1) = 0$.
 - (c) **Bonus**: What is the splitting field of f(x)?
- 5. Let $g_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1 = \frac{x^{p-1}}{x-1} \in \mathbb{Q}[x].$
 - (a) Write down $g_p(x+1)$ via the quotient $\frac{(x+1)^{p-1}}{x+1-1}$.
 - (b) Prove that the number $\binom{p}{k} \equiv 0 \mod p$ for $1 \leq k \leq p-1$.
 - (c) Prove that the polynomial $g_p(x)$ is irreducible for every p.
 - (d) What is the degree $[K : \mathbb{Q}]$ where $K = \mathbb{Q}[x]/\langle g_p(x) \rangle$?
 - (e) Prove that if $g_p(\alpha) = 0$, then $g_p(\alpha^r) = 0$ for every $1 \le r \le p-1$.
 - (f) Prove that $\alpha \neq \alpha^r$ for any 1 < r < p.
- 6. Let $f(x) = x^3 2 \in \mathbb{Q}[x]$.
 - (a) Prove that f(x) is irreducible.
 - (b) Prove that $\mathbb{Q}[x]/\langle f(x)\rangle \simeq \mathbb{Q}[\beta]$ where $\beta \in \mathbb{C}$ is a root of f(x).
 - (c) Show that if $\beta \in \mathbb{C}$ is a root of f(x), then $\alpha\beta$ is also a root of f(x). Here $\alpha \in \mathbb{C}$ is one root of $g_3(x)$ in the last question.
 - (d) Denote $K \subset \mathbb{C}$ to be the smallest subfield of \mathbb{C} such that f(x) splits into product of linear factors, i.e., degree 1 polynomials. Prove that $\alpha, \beta \in K$.
 - (e) **Bonus**: Prove that $2|[K : \mathbb{Q}]$ and $3|[K : \mathbb{Q}]$. Hint: In order to prove $2|[K : \mathbb{Q}]$, look for some subfield $\mathbb{Q} \subset M \subset K$ where $[M : \mathbb{Q}] = 2$.