Homework 6, Math 401

due on March 2, 2020

Before you start, please read the syllabus carefully.

1. Consider the field extension $\mathbb{Z}_{3} \subset F=\mathbb{Z}_{3}[x] /\left\langle x^{2}-2\right\rangle$.
(a) Write down the elements in F.
(b) Write down the multiplication table for the group of units F^{*}.
(c) Find all ring homomorphism from F to F.
2. Consider the field extension $\mathbb{Z}_{5} \subset F=\mathbb{Z}_{5}[x] /\left\langle x^{2}-2\right\rangle$. Is $f(T)=T^{2}-3$ irreducible in F ? What is the splitting field of $f(T) \in F[T]$?
3. Consider the field $F=\mathbb{Z}_{5}$. How many monic irreducible quadratic polynomials (meaning leading coefficient 1) are there in $F[x]$?
4. Consider $f(x)=x^{3}-x+1 \in \mathbb{Z}_{3}[x]$.
(a) Is $f(x)$ irreducible?
(b) Prove that if $f(\alpha)=0$, then $f(\alpha+1)=0$.
(c) Bonus: What is the splitting field of $f(x)$?
5. Let $g_{p}(x)=x^{p-1}+x^{p-2}+\cdots+x+1=\frac{x^{p}-1}{x-1} \in \mathbb{Q}[x]$.
(a) Write down $g_{p}(x+1)$ via the quotient $\frac{(x+1)^{p}-1}{x+1-1}$.
(b) Prove that the number $\binom{p}{k} \equiv 0 \bmod p$ for $1 \leq k \leq p-1$.
(c) Prove that the polynomial $g_{p}(x)$ is irreducible for every p.
(d) What is the degree $[K: \mathbb{Q}]$ where $K=\mathbb{Q}[x] /\left\langle g_{p}(x)\right\rangle$?
(e) Prove that if $g_{p}(\alpha)=0$, then $g_{p}\left(\alpha^{r}\right)=0$ for every $1 \leq r \leq p-1$.
(f) Prove that $\alpha \neq \alpha^{r}$ for any $1<r<p$.
6. Let $f(x)=x^{3}-2 \in \mathbb{Q}[x]$.
(a) Prove that $f(x)$ is irreducible.
(b) Prove that $\mathbb{Q}[x] /\langle f(x)\rangle \simeq \mathbb{Q}[\beta]$ where $\beta \in \mathbb{C}$ is a root of $f(x)$.
(c) Show that if $\beta \in \mathbb{C}$ is a root of $f(x)$, then $\alpha \beta$ is also a root of $f(x)$. Here $\alpha \in \mathbb{C}$ is one root of $g_{3}(x)$ in the last question.
(d) Denote $K \subset \mathbb{C}$ to be the smallest subfield of \mathbb{C} such that $f(x)$ splits into product of linear factors, i.e., degree 1 polynomials. Prove that $\alpha, \beta \in K$.
(e) Bonus: Prove that $2 \mid[K: \mathbb{Q}]$ and $3 \mid[K: \mathbb{Q}]$. Hint: In order to prove $2 \mid[K: \mathbb{Q}]$, look for some subfield $\mathbb{Q} \subset M \subset K$ where $[M: \mathbb{Q}]=2$.
