Homework 7, Math 401

due on March 16, 2020

Before you start, please read the syllabus carefully.

- 1. Determine the splitting field of $f(x) = x^5 2 \in \mathbb{Q}[x]$.
- 2. Consider $f(x) = x^8 1 \in \mathbb{Q}[x]$.
 - (a) Determine the factorization of f(x) into product of irreducible polynomials over $\mathbb{Q}[x]$.
 - (b) Determine the splitting field K of $x^4 + 1 \in \mathbb{Q}[x]$.
 - (c) Is $x^2 + 1$ irreducible in K[x]?
 - (d) Determine the splitting field of $f(x) \in \mathbb{Q}[x]$.
- 3. Denote $K = \mathbb{Q}[\sqrt{2} + \sqrt{5}] \subset \mathbb{C}$.
 - (a) Prove that $K \subset F := \mathbb{Q}[\sqrt{2}, \sqrt{5}].$
 - (b) Determine $[F : \mathbb{Q}]$.
 - (c) Denote $\alpha = \sqrt{2} + \sqrt{5}$. Prove that $1, \alpha, \alpha^2, \alpha^3$ are linearly independent over \mathbb{Q} .
 - (d) Prove that K = F.
 - (e) Prove that $\{1, \alpha, \alpha^2, \alpha^3\}$ is a basis for K as a vector space over \mathbb{Q} .
 - (f) Write α^4 as a linear combination of $\{1, \alpha, \alpha^2, \alpha^3\}$, i.e., find $a, b, c, d \in \mathbb{Q}$ such that

 $\alpha^4 = a + b\alpha + c\alpha^2 + d\alpha^3.$

- (g) Prove that $\mathbb{Q}[x]/\langle f(x)\rangle \simeq K$ where $f(x) = x^4 (a + bx + cx^2 + d^3)$.
- 4. (a) Prove that $g(x) = x^4 + 1$ is reducible over \mathbb{F}_3 . (Hint: find h(x)|g(x))
 - (b) Determine the factorization of $f(x) = x^9 x \in \mathbb{F}_3[x]$ into irreducible polynomials.
 - (c) Determine the splitting field of f(x) and its degree over \mathbb{F}_3 .