Homework 7, Math 401

due on March 16, 2020

Before you start, please read the syllabus carefully.

1. Determine the splitting field of $f(x)=x^{5}-2 \in \mathbb{Q}[x]$.
2. Consider $f(x)=x^{8}-1 \in \mathbb{Q}[x]$.
(a) Determine the factorization of $f(x)$ into product of irreducible polynomials over $\mathbb{Q}[x]$.
(b) Determine the splitting field K of $x^{4}+1 \in \mathbb{Q}[x]$.
(c) Is $x^{2}+1$ irreducible in $K[x]$?
(d) Determine the splitting field of $f(x) \in \mathbb{Q}[x]$.
3. Denote $K=\mathbb{Q}[\sqrt{2}+\sqrt{5}] \subset \mathbb{C}$.
(a) Prove that $K \subset F:=\mathbb{Q}[\sqrt{2}, \sqrt{5}]$.
(b) Determine $[F: \mathbb{Q}]$.
(c) Denote $\alpha=\sqrt{2}+\sqrt{5}$. Prove that $1, \alpha, \alpha^{2}, \alpha^{3}$ are linearly independent over \mathbb{Q}.
(d) Prove that $K=F$.
(e) Prove that $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ is a basis for K as a vector space over \mathbb{Q}.
(f) Write α^{4} as a linear combination of $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$,i.e., find $a, b, c, d \in \mathbb{Q}$ such that

$$
\alpha^{4}=a+b \alpha+c \alpha^{2}+d \alpha^{3}
$$

(g) Prove that $\mathbb{Q}[x] /\langle f(x)\rangle \simeq K$ where $f(x)=x^{4}-\left(a+b x+c x^{2}+d^{3}\right)$.
4. (a) Prove that $g(x)=x^{4}+1$ is reducible over \mathbb{F}_{3}. (Hint: find $\left.h(x) \mid g(x)\right)$
(b) Determine the factorization of $f(x)=x^{9}-x \in \mathbb{F}_{3}[x]$ into irreducible polynomials.
(c) Determine the splitting field of $f(x)$ and its degree over \mathbb{F}_{3}.

