Homework 8, Math 401

due on April 3, 2020

Before you start, please read the syllabus carefully.

1. Let F be an arbitrary field with $\operatorname{char}(F)=p$. Prove that $\mathbb{F}_{p} \subset F$, i.e., \mathbb{F}_{p} is a subfield of F. (This is a quick proof of $\mathbb{F}_{p} \subset S$ of Claim 2 in class.)
2. Prove that for an irreducible polynomial $f(x) \in \mathbb{F}_{p}[x]$, the field extension $\mathbb{F}_{p}[x] /\langle f(x)\rangle$ is also the splitting field of $f(x)$. (Hint: prove that $f(x) \mid x^{q}-x$ for $q=p^{\operatorname{deg}(f)}$.)
3. Prove that $\mathbb{F}_{p^{d}}$ is a subfield of $\mathbb{F}_{p^{n}}$ if and only if $d \mid n$.
4. For an arbitrary field F, we define a formal operation on $f(x) \in F[x]$ called derivative as following

$$
f^{\prime}(x):=\sum_{n} a_{n} \cdot n \cdot x^{n-1},
$$

if $f(x)=\sum_{n} a_{n} \cdot x^{n}$.
(a) Prove that

$$
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x),
$$

for $F[x]$ for arbitrary field F.
(b) Prove that if $f(x)$ has a multiple root α, equivalently $\left.(x-\alpha)^{2} \mid f(x)\right)$, then α is also a root of $f^{\prime}(x)$.
(c) Does the converse from above holds? i.e., if $f^{\prime}(\alpha)=0$, does it imply that α is a multiple root $f(x)$? If yes, give a proof, if no, give a counter example or give a correct statement.
(d) Prove that $f(\alpha)=f^{\prime}(\alpha)=\cdots=f^{(k)}(\alpha)=0$ if and only if $(x-\alpha)^{k+1} \mid f(x)$ for $f(x)$ in polynomial ring $F[x]$ where F is an arbitrary field. (Does this remind you of Taylor expansion in calculus?)
5. Let $f(x)=x^{2}+x+1 \in \mathbb{F}_{p}[x]$ where $p>3$ is a prime number.
(a) Determine if $f(x)$ is irreducible in $\mathbb{F}_{p}[x]$. (Give a criteria on when $f(x)$ is irreducible.)
(b) For $p=5$, using your criteria to determine whether $f(x)$ is irreducible. If yes, denote $K=\mathbb{F}_{5}[x] /\langle f(x)\rangle$. Show that K contains all 24-th roots of unity ζ_{24} (i.e. elements α such that $\alpha^{24}=1$).
(c) For $p=7$, using your criteria to determine whether $f(x)$ is irreducible. If no, determine the factorization of $f(x)$.
(d) The largest prime number ever found up to now is $p=2^{82589933}-1$. Use your criteria to determine whether $f(x)$ is irreducible. You are not allowed to use computer.
6. Let $f_{p}(x)=x^{p-1}+x^{p-2}+\cdots+1 \in \mathbb{F}_{3}[x]$ where $p>3$ is a prime number. Denote K_{p} to be the splitting field of $f_{p}(x)$ over \mathbb{F}_{3}.
(a) Prove that $x^{r}-1 \mid x^{s}-1$ in $\mathbb{F}_{3}[x]$ if and only if $r \mid s$.
(b) Prove that $f_{p}(x) \mid x^{q}-x$ for $q=3^{n}$ if and only if $p \mid 3^{n}-1$.
(c) Determine $\left[K_{p}: \mathbb{F}_{3}\right]$.
(d) Determine when $f_{p}(x)$ is irreducible in $\mathbb{F}_{3}[x]$. For $p=7,11,13$, use your criteria to determine yes/no.
7. Given $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ such that $\sigma(x)=x^{p}$. Prove that σ is a ring isomorphism.

