Homework 8, Math 401

due on April 3, 2020

Before you start, please read the syllabus carefully.

- 1. Let F be an arbitrary field with char(F) = p. Prove that $\mathbb{F}_p \subset F$, i.e., \mathbb{F}_p is a subfield of F. (This is a quick proof of $\mathbb{F}_p \subset S$ of Claim 2 in class.)
- 2. Prove that for an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$, the field extension $\mathbb{F}_p[x]/\langle f(x) \rangle$ is also the splitting field of f(x). (Hint: prove that $f(x)|x^q x$ for $q = p^{\deg(f)}$.)
- 3. Prove that \mathbb{F}_{p^d} is a subfield of \mathbb{F}_{p^n} if and only if d|n.
- 4. For an arbitrary field F, we define a formal operation on $f(x) \in F[x]$ called *derivative* as following

$$f'(x) := \sum_{n} a_n \cdot n \cdot x^{n-1},$$

- if $f(x) = \sum_{n} a_n \cdot x^n$.
- (a) Prove that

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x),$$

for F[x] for arbitrary field F.

- (b) Prove that if f(x) has a multiple root α , equivalently $(x \alpha)^2 | f(x) \rangle$, then α is also a root of f'(x).
- (c) Does the converse from above holds? i.e., if $f'(\alpha) = 0$, does it imply that α is a multiple root f(x)? If yes, give a proof, if no, give a counter example or give a correct statement.
- (d) Prove that $f(\alpha) = f'(\alpha) = \cdots = f^{(k)}(\alpha) = 0$ if and only if $(x \alpha)^{k+1} | f(x)$ for f(x) in polynomial ring F[x] where F is an arbitrary field. (Does this remind you of Taylor expansion in calculus?)
- 5. Let $f(x) = x^2 + x + 1 \in \mathbb{F}_p[x]$ where p > 3 is a prime number.
 - (a) Determine if f(x) is irreducible in $\mathbb{F}_p[x]$. (Give a criteria on when f(x) is irreducible.)
 - (b) For p = 5, using your criteria to determine whether f(x) is irreducible. If yes, denote $K = \mathbb{F}_5[x]/\langle f(x) \rangle$. Show that K contains all 24-th roots of unity ζ_{24} (i.e. elements α such that $\alpha^{24} = 1$).
 - (c) For p = 7, using your criteria to determine whether f(x) is irreducible. If no, determine the factorization of f(x).
 - (d) The largest prime number ever found up to now is $p = 2^{82589933} 1$. Use your criteria to determine whether f(x) is irreducible. You are not allowed to use computer.

- 6. Let $f_p(x) = x^{p-1} + x^{p-2} + \dots + 1 \in \mathbb{F}_3[x]$ where p > 3 is a prime number. Denote K_p to be the splitting field of $f_p(x)$ over \mathbb{F}_3 .
 - (a) Prove that $x^r 1|x^s 1$ in $\mathbb{F}_3[x]$ if and only if r|s.
 - (b) Prove that $f_p(x)|x^q x$ for $q = 3^n$ if and only if $p|3^n 1$.
 - (c) Determine $[K_p : \mathbb{F}_3]$.
 - (d) Determine when $f_p(x)$ is irreducible in $\mathbb{F}_3[x]$. For p = 7, 11, 13, use your criteria to determine yes/no.
- 7. Given $\sigma : \mathbb{F}_q \to \mathbb{F}_q$ such that $\sigma(x) = x^p$. Prove that σ is a ring isomorphism.