Homework 9, Math 401

due on April 13, 2020

Before you start, please read the syllabus carefully.

- 1. Given $n \ge 4$.
 - (a) Show that A_n can be generated by all 3-cycles (meaning that the smallest subgroup containing all 3-cycles is A_n itself).
 - (b) Show that if $H \triangleleft A_n$ is a normal subgroup, and H contains one 3-cycle, then H contains all 3-cycle.
- 2. We study $G = A_4$.
 - (a) Determine all subgroups of A_4 , and determine whether they are normal or not.
 - (b) Write down all increasing sequences of subgroups $G_0 = e \subset G_1 \subset G_2 \subset \cdots \subset G_n = G$ where $G_i \triangleleft G_{i+1}$ and G_{i+1}/G_i is abelian.
- 3. Let G be a finite group. Define a relation on G: $g_1 \sim g_2$ iff there exists $\sigma \in G$ such that $\sigma g_1 \sigma^{-1} = g_2$. Show that \sim is an equivalence relation. (The equivalence class is called *conjugacy classes of G.*)
- 4. Let G be a finite group. Define a relation on subgroups of G: $H_1 \sim H_2$ iff there exists $\sigma \in G$ such that $\sigma H_1 \sigma^{-1} = H_2$. Show that \sim is an equivalence relation. (The equivalence class is called *conjugacy classes of subgroups of G*.)
- 5. Let G be a finite group and $N \triangleleft G$ be a normal subgroup and $H \subset G$ be a subgroup.
 - (a) We denote $N \cdot H$ to be the subset $\{n \cdot h \mid n \in N, h \in H\}$ of G. Show that $N \cdot H$ is a subgroup.
 - (b) Show that $N \cdot H = H \cdot N$.
 - (c) Show that $N \cap H$ is a normal subgroup of H.
 - (d) Show that $N \cdot H/N \simeq H/(N \cap H)$.
- 6. Let $N \triangleleft G$ be a normal subgroup of G. Show that if G is solvable, then G/N is solvable.
- 7. Given a finite group G. Prove that if |G| = p and p is a prime number, then $G \simeq C_p$ where C_p is the cyclic group with order p.
- 8. Given a finite group G. Prove that if $|G| = p^n$ some prime power, then there exists $g \in G$ with $\operatorname{ord}(g) = p$.

- 9. Let G be a finite group. Prove that if G/N_1 and G/N_2 are abelian, then $G/(N_1 \cap N_2)$ is also abelian. (Therefore we can define G^{ab} to be the maximal quotient group G/N that is abelian, we call it the *abelianization of* G.)
- 10. Denote [G, G] to be the smallest subgroup of G containing $g_1g_2g_1^{-1}g_2^{-1}$ for all $g_1, g_2 \in G$. Prove that $G/[G, G] = G^{ab}$.