Office Hour:
$$11:00 - 1000$$

starting from this Thursday.
Classification of Finite Fields (fields with finitely
many elements)
Claim 0:
If a field F contains finitely many elements, then
char(F) < ∞ . (Recall char(F) is the shallest
positive integer $m > 0$ st.)
H I + + I = 0 \in F
Pf: Consider the set $S=\xi 1, 2.1, 3.1, ..., m.1, \} \subseteq F$
which only contains finitely many elements.
If char(F)=0 (meaning $m.1 \neq 0$ for any $m \in \mathbb{Z}$).
then S will contains infinitely many elements. Controdiction
Recall we showed before char(F) must be a prime member
 $n=\Pi P_{i}^{V_{i}}$ $n = 1 = 0 = 2 = P|n = P_{i} = 0$
since there is no zero-divisors in F.

Claim 1: If char(F)=P. |F| < 00, then |F|=p" for some nEZ+. If char(F)=p, then $\{0,1,\dots,p-1\}\subseteq F$ Pf: is a subfield $\mathbb{F}_{P}(\mathbb{Z}_{P})$, so F is a field extension of Hp. So it is a vertor space / Hp. say with dim = n. We know n < 00 because IF/<00. Therefore F contains pⁿ elements since any climension n Fp-v.s contains pⁿ elements. Ο. Q: Any example of fields. F s.t. 1) $char(F) < \infty$ 2) |F| = 00 eg. $F = \overline{H_p}(t) = \left\{ \frac{f(t)}{g(t)} \mid f(t), g(t) \in \overline{H_p}[t] \right\}$ $+, -, \times, +$ is a field. F is still a field extension of FFp. denefore char(F)=p. t, t², t³, ..., are all different elements in F. So 1F1=00.

Our main goal is to show the following theorem.
Them. There exists a unique finite field
$$\mp$$
 s.t.
 $|F|=p^n=q$ for every p and every n .
Pf: Existence : (It is clear char(F) = p . so F must
a field extension of $|F_p$.)
Let $f(x)=x^2-x \in |F_pIx|$. Let K be the
splitting field of $f(x)$ over $\overline{F}p$.
(Recall splitting field of $f(x) \in F[x]$ is the smallest
field extension $F \equiv K$ st. $f(x) = \pi(x-x_i) \in K[x]$,
or equivalently. The smallest field extension containing all
roots of $f(x)$.
 $K \equiv \overline{F}p(f)$
 $K \equiv \overline{F}p(f)$
 $Ff: if a^2 \equiv a_i$, $a_x^2 \equiv a_x$, then
 $\overline{F}p$
 F_p
 $(a_i + a_x)^2 = a_i dx$
 $\overline{F}p \subseteq S$ since $a \in \overline{F}p$ satisfy
 $x^{P-i} = 1$

 $\begin{bmatrix} \text{Lemma} : & \text{Given a finite group } G. & \text{with } |G| = n. \\ \text{Then } g^n = e & \text{for all } g \in G. & (We & will prove this in next class.$ next class. $Notice <math>F_p \setminus \{o\} = F_p^{\times}$ is an abelian group with $|T_p^{\times}| = P^{-1}$. So by the lemma. $\chi^{P-1} = 1$ $\forall \propto \in T_p^{\times}$. so $\chi^P = \chi$, thus $\chi^2 = ((\chi^P)_{**}^{P})_{**}^P = \chi$. $\chi^2 = (\chi^P)_{**}^{P} = \chi$.

$$\frac{Claim^{3}}{f(x)} = f(x) \text{ has distincts roots.}$$

$$f(x) = \pi(x - \alpha_{i})^{2} + f(x) + \alpha_{i} + \alpha_{i}$$

Then we know $|S| = p^n$. So we finish the existence.

Uniqueness: If F contains pⁿ elements. Consider
its multiplicative group
$$F^{x} = F \setminus \{0\}$$
. $|F^{x}| = p^{n} - 1$
elements. So. by the Lemma before. $x^{q-1} = 1$ for all
 $x \in F$. So $x^{q} = x$. So all elements of F
are roots of $f(x) = x^{q} - x$, so $F \subseteq K$ the splitting
 $field$ of $f(x)$, we know $|K| = p^{n}$ because
in last part $k = S$ has size p^{n} .
and F has size p^{n} , so $F = K$.
Q: Do we always get the splitting field for fors
by $F_{p}[x]/f_{k}$ for irreducible fier $\in F_{p}[r]$.
Ans. Yes. Requires a proof. (Left as an exercise).
Corollary. Finite fields with $q = p^{n}$ elements, denoted by

 F_q is the splitting field of $f(x) = x^2 - x$. Actually every element in F_q is a root of f(x). Q: How to find a set of basis for F_q as a

dim=n u-s over Fp?