

	\mathbb{F}_{q}	9= P [°]	S={ 6 6	$: F_{g} \to F_{g}$	ring ho	momorphism)
n			•: S × S -	$\rightarrow S$		
	FP		0 T -	→ 6°C		
[Fg:	F _p]=	h	$\overline{H}_q \xrightarrow{L} \overline{H}_q \xrightarrow{q} $	$\rightarrow H_q$		
			6 ° T			

in \overline{Hq} . But \overline{Hq} is a field, so its ideal is $|ker(6)^{=?}|$ either (0) or \overline{Hq} . So ker(6) = (0) because $6(1) \neq 0$. So 6 is actually a ring isomorphism

$$F_q \xrightarrow{6} F_q$$
 is both injective & surjective.
 $f_{q} \xrightarrow{6} F_q$ following from $F_{ev(6)} = (0)$.
 $\forall a \in F_q$. $\exists ! x \in F_q$ s.t. $G(x) = a$ call $x = 6^{-1}(a)$.

So we define $S: \overline{IT}_q \longrightarrow \overline{IT}_q$ $a \longrightarrow \overline{6'(a)}$

We need to show that $\delta \in S$ $\delta(a+b) = \delta(\delta(\alpha) + \delta(\beta))$ Soy $\delta(\alpha) = a = \delta(\delta(\alpha + \beta))$ $\delta(\beta) = b = \alpha + \beta = \delta(a) + \delta(b)$ Same thing holds for X.

Examples for finite grps?
eg. 1)
$$\overline{H_{p}}^{\times} = (\overline{H_{p}} \setminus So3, \times)$$
, $\overline{H_{q}}^{\times}$ P prime $q=p^{n}$
(F[×], ×) F is a field.
2) $Z_{m} = (\{o, 1, \dots, m-1\}, +)$
(R,+) R is a ring. although might not be
finite
All previous example we encountered are abelian grps.

Suppose G is a finite grp. and
$$H \subseteq G$$
 a subgrp.
We can define a relation on G. "~".
 $g_1 \sim g_2 \iff g_1^{-1}, g_2 \in H$.
Lemma. "~" is an equivalence relation. $r_1 \sim r_2 \in J_2$.
 $p_1 \sim g_2$ because $g_1^{-1}, g \in H$
 $r_1 \sim r_2 \in I$.
 $p_1 \sim g_2$ then $g_2 \sim g_1$ because
 $g_1^{-1}, g_2 \in H \Rightarrow g_2^{-1}, g_1 \in H$
 $r_1 \sim r_2 \in J_2$.
 $g_1 \sim g_2, g_2 \sim g_3$ then $g_1 \sim g_3$ because
 $g_1^{-1}, g_2 \in H, g_2^{-1}, g_3 \in H \Rightarrow g_1^{-1}, g_3 \in H$.
 $p_1 \sim g_2 \in H, g_2^{-1}, g_3 \in H \Rightarrow g_1^{-1}, g_3 \in H$.
 $g_1 \sim g_2 \in H, g_2^{-1}, g_3 \in H \Rightarrow g_1^{-1}, g_3 \in H$.
 $p_1 \sim g_2 \in H, g_2^{-1}, g_3 \in H \Rightarrow g_1^{-1}, g_3 \in H$.
 $p_2 \sim g_3 \in H$.
 $p_1 \sim g_3 \in H$.
 $p_1 \sim g_3 \in H$.
 $p_2 \sim g_3 \in H$.

So $Ig J = g \cdot H$

Q: How many elements in Ig]?
HIg] = # H

$$\begin{cases} since elements in g. H are all different.
g. h. = g. hz then h. = hz by cancellation law.]
 $if (index)$ The index of H in G is the number
of equivalence classes of "~" Denote index by
I C: H].
(Lagrange.)
Thm. IGI / IH] = IG: H].
Pf: G = UgH. is a disjoint inion of equivalence
classes.
Def(coset). We call g. H a coset of H.
Recall Lemma from last time:
(a)Thm. IGI = n. Then bg e G. g" = e.
A finit grp
Def(cyclic grp) YG is cyclic grp if $\exists g \in G$ s.t.
for every element $x \in G = \exists k \in \mathbb{Z}$ s.t. $x = g^k = g.g. \dots g$
g is called a generator for the cyclic grp. k times
eg. (\mathbb{Z}_m , +) because 1. is the generator.
 $n = \frac{1+1+\dots+1}{n time5}$$$

Chaim: A finite cyclic grp has to be isomorphic to

$$(\mathbb{Z}m,t)$$
 for some m .
Pf: Let g be the generator. Then the grp contains
 $\{g,g^2,g^3,\dots,g^k,\dots,g^{n-1},g^n=e\} \in \mathbb{Z}$
where n is the smallest \vee integer $s.t.$ $g^n=e$.
Then $G \simeq (\mathbb{Z}m,t)$ as a $g^r p$. (A grp isomorphism is a
 grp homo morphism that is
injective anal surjective).
Def.(order) Given $g \in G$, the order of g is the

smallest positive integer
$$n > 0$$
 s.t $g^n = e \in G$.
We will denote subgrp generated by g to be $e^{g} = G$.
 $\subseteq G$.

Proof of thm
$$\Delta$$
:
Given $g \in G$, define $H = \langle g \rangle$ to be a subgrp
and H is cyclic. $|H||$ is equal to the order of g
By the cheorem of Lagrange. $|G| = |H| \cdot EG: H$
 $g^{|G|} = g^{|H| \cdot EG: H]} = e^{EG: H]} = e$ \square .
Application : Fermat's Little Theorem.
 $\forall p \nmid n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \in \mathbb{Z}$ $n^{P_1} \equiv 1 \pmod{p}$.
 $P \restriction n \equiv 1 \pmod{p}$.
 P

 (\overline{H}_{25}, t) (\overline{Z}_{15}, t) are not the same as grps. since $5 \cdot 1 = 0$ in \overline{H}_{25} but $5 \cdot 1 \neq 0$ in \overline{Z}_{25}

Q: Why is
$$(=g>| = ord(g))^{2}$$

 $cg> = \{e,g, ..., g^{n-1}\}$ suppose $ord(g) = n$
 $g^{k} = g^{r}$, $o \le r < n$
suppose $g^{r_{1}} = g^{r_{2}}$ then $g^{r_{1}-r_{2}} = e$ (wTLG, $r_{1}>r_{2}$)
contradicts with n being $ord(g)$.