Permutation Group (Alternating Group
densted Sn densted An
Recall $S_n := \{\{ \in \{1, \dots, n\} \rightarrow \{1, \dots, n\} \}$ that is bijective $\}$
, o) T composition
Goal: Define An, desvible An.
Normal Subgrp.
Recall me defined quotient ring for a ring R by
an ideal $I \subseteq R$, $R/1$.
to be (Sequivalence classes of "~" }, +, ×).
Here a-b in R it in R
а-6 Е I.
O: Can me do similar thirys for grp?
Last time, given HEG. we define to be
9,~g2 iff 9, J2 EH
Can me define . on Equivalence 3 grp operation classes
by picking representatives?

g. H g. H g. g_ are the representatives for the We need to check whether this multiplication is nell-defined ? $\widetilde{g}_{1}, \widetilde{g}_{2}$ $H = g_{1}g_{2}$ $H \iff \widetilde{g}_{1}, \widetilde{g}_{2} \sim_{H} g_{1}g_{2}$ $\langle = \rangle \left(\widetilde{g}_{1}, \widetilde{g}_{2} \right)^{T} \left(g_{1}, g_{2} \right) \in H$ Now since $\tilde{g}_i \in g_i$ H we have $\tilde{g}_i = g_i h$, for some $h, \in H$ similarly me have $\widehat{g_2} = \widehat{g_2} \cdot h_2$ for some $h_2 \in H$ $(=) (g_2 h_2)^{-1} (g_1 h_1)^{-1} g_1^{-1} g_2^{-1} \in H$ $h_{2}^{-1} g_{2}^{-1} h_{1}^{-1} g_{1}^{-1} g_{2} g_{2} = \frac{h_{2}}{1} g_{2}^{-1} h_{1}^{-1} g_{2} \in H$ $h_{i}^{-1} \in \underbrace{g_{2} H g_{2}^{-1}}_{\stackrel{\text{line}}}{\stackrel{\text{line}}{\stackrel{\text{line}}{\stackrel{\text{line}}}{\stackrel{\text{line}}{\stackrel{\text{line}}}{\stackrel{\text{line}}{\stackrel{\text{line}}}{\stackrel{\text{line}}}\stackrel{\text{line}}{\stackrel{\text{line}}}\stackrel{\text{line}}{\stackrel{\text{line}}}\stackrel{\text{line}}}{\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}\stackrel{\text{line}}}\stackrel{\text{line}}}\stackrel{\text{lin$ g_{2}^{-1} , h_{1}^{-1} , $g_{2} \in H$ Notice that we can choose any h, EH

and any gre G since we can choose any representative for git and grt and we can choose any two cosets to do grp operation.

In order to make the operation on cosets nell-defined, ne need $H \subseteq g_2 H g_2^{-1}$. for any g2EG. Det (normal subgrp). A subgrp $H \subseteq G$ is normal if $H \subseteq g^{-1}Hg$ for any $g \in G$. $\begin{pmatrix} Rmk: For finite gaps \\ G, H \subseteq g^{-1}Hg \ll \end{pmatrix}$ We will write $H \triangleleft G$ to imply H is normal in G. R_{i} the main $H \triangleleft G$ is normal in G. By the previous deductions, me show that: Lemma: Giron NJG, we have ({wsets of N}, .) forms a grp. is well-defined Pf: Since NJG, the operation . The idendity law / associative law / inverse law (9. $(e \cdot H) \cdot (g \cdot H) = (g \cdot e) H = g H (g \cdot H) \cdot (g \cdot H)$ Det (quotient grp) Given NSG, then the grp ({ cosets of N3, ·) is called the quotient grp of G by N. Denote it by UN.

Fact:
$$|G_N| = \frac{|G|}{|N|} \stackrel{\text{Lagrange}}{=} EG: N]$$

Identity.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}$$

 $Q: 1) H_1 = \langle G \rangle$ How large is H_1 ?
Is H_1 normal in $G = S_3$?

Ans. 1)
$$T^{-1} \in T = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \notin H_1$$

H₁ note normed

2) $[S_3: H_2] = 2$. So H_2 must be normal in S_3 . H_2 6. H_2 $6H_2 = H_2 6$ Lemma. Given $H \subseteq G$, if iG:H = 2, then $H \triangleleft G$. Pf: $H \triangleleft G \iff \tilde{g} \mid Hg = H \quad \forall g \in G$ $\Longrightarrow Hg = gH \quad \forall g \in G$ right coset ihgiheHBut if iG:H = 2. the $\exists g \in G$. $g = H \cup g H$ g = G. $G = H \cup H g_2$ $s^{\circ} = g, H = H \cdot g_2$

Actually & g & H me have gH = g,H H.g_2 = H.g

so. $\forall g \in G. g H = Hg.$ D.

Another water of for 2). is to check

Lemma: Vg gHg⁻¹ = H (=>

∀gi giHgi¹ = H where gi are within a set of representatives for left cosets of H. (i.e. G = ÜgiH , k = EG: H]).
Pf. Exercise. This implies it is enough to check $6^{-1}t \in 6ct7$. After Class Rink: The definition The normal subgrps require $H \leq g^{-1}Hg \quad \forall g \in G$ notice that by multiplying on both sides. by g and g⁻¹ $gHg^{-1} \leq H$, So $H \leq g^{-1}Hg \quad \forall g \in G \iff H \equiv g^{-1}Hg \quad \forall g \in G$ This does not require a "size" argument in the lecture.