Permutation Group / Alternating Group denoted S_{n} " denoted "An

Recall $S_{n}:=\left(\left\{\begin{array}{ll|l} & 6 \mid \sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \text { that is bijectime }\}\end{array}\right.\right.$ $\left.\begin{array}{c}0 \\ \uparrow\end{array}\right)$ composition

Goal: Define A_{n}, desrible A_{n}.

Normal Subgrp.
Recall we defined quotient ring for a ring R by an ideal $I \subseteq R, R / I$. to be (\{equivalence classes of "~"\}, $\oplus_{1},($). inherited from t, x
Here $a \sim b$ in R if in R

$$
a-b \in I .
$$

Q: Can me do similar this for gre?
Last time, given $H \subseteq G$. we define " $\sim{ }_{H}$ " to be

$$
g_{1} \sim g_{2} \quad \text { iff } \quad g_{1}^{-1} \cdot g_{2} \in H
$$

Can we define irprpoperation on $\left.\begin{array}{c}\text { equivalence } \\ \text { classes }\end{array}\right\}$ classes

$$
g \cdot H:=\{g \cdot h \mid h \in H\}
$$ by picking representatives?

$g_{1} H \quad g_{2} \cdot H \quad g_{1}, g_{2}$ are the representatives for the $\tilde{g}_{1} \in G \quad \tilde{g}_{2} \in G \quad$ two cosets.

$$
\left(g_{1} \cdot H\right) \cdot\left(g_{2} \stackrel{\left.g_{1} \in L\right) \stackrel{?}{\uparrow} \stackrel{g_{i}}{\uparrow} \tilde{g}_{2} H \cdot g_{1} \cdot g_{2} ? ?}{ }\right.
$$

We need to check whether this multiplication is well-defined?

$$
\begin{aligned}
\tilde{g}_{1} \cdot \tilde{g}_{2} H=g_{1} \cdot g_{2} H & \Leftrightarrow \tilde{g}_{1} \cdot \widetilde{g}_{2} \sim_{H} g_{1} \cdot g_{2} \\
& \Leftrightarrow\left(\tilde{g}_{1} \cdot \tilde{g}_{2}\right)^{-1} \cdot\left(\tilde{g}_{1} \cdot g_{2}\right) \in H
\end{aligned}
$$

Now since $\tilde{g}_{1} \in g_{1} \cdot H$ we have $\tilde{g}_{1}=g_{1} \cdot h_{1}$ for some $h_{1} \in H$ similarly me have $\tilde{g}_{2}=g_{2} \cdot h_{2}$ for some $h_{2} \in H$

$$
\begin{aligned}
\begin{array}{ll}
& \left(g_{2} \cdot h_{2}\right)^{-1} \cdot\left(g_{1} \cdot h_{1}\right)^{-1} \cdot g_{1} \cdot g_{2} \in H \\
& \left.h_{2}^{-1} \cdot g_{2}^{-1} \cdot h_{1}^{-1} \cdot g^{-1} \cdot g \cdot g_{2}=\frac{h_{2}^{-1}}{h_{1}} \cdot \right\rvert\, g_{2}^{-1} \\
\Leftrightarrow & g_{2}^{-1} \cdot h_{1}^{-1} \cdot g_{2} \in H \\
\Leftrightarrow & h_{1}^{-1} \in \frac{g_{2} H g_{2}^{-1}}{\Delta 11}\left\{g_{2} h g_{2}^{-1} \mid\right. \\
h \in H\}
\end{array} & h^{-1} .
\end{aligned}
$$

$$
h_{m} \cdot \operatorname{mon}_{\text {m }} \Rightarrow g \in H
$$

$$
h^{-1} \cdot\left(\begin{array}{l}
h \cdot g=h^{\prime} \in H \\
>g=h^{-1} \cdot h^{\prime} \in H \\
r \gg
\end{array}\right.
$$

Notice that we can choose any $h_{1} \in H$ and any $g_{2} \in G$ since we can choose any representative for $g_{1} H$ and $g_{2} H$ and we can choose any two cosets to do gop operation.

In order to make the operation on coset well-defined, we need $H \subseteq g_{2} H g_{2}^{-1}$ for any $g_{2} \in G$.

Def (normal subgrp). A subgrp $H \subseteq G$ is normal if $H \subseteq g^{-1} H g$ for any $g \in G .\left(\begin{array}{l}R m k: \text { For finite grus } \\ G, H \subseteq g^{-1} H g \Leftrightarrow \\ H=g^{-1} H g .\end{array}\right)$ since $|H|=\left|g^{-1} H\right| g \mid$.
We will write $H \nabla G$ to imply H is normal in C. By the previous deductions, me show that:

Lemma: Given $N \nabla G$, we have ($\{$ coset of $N\}, \cdots)$ forms a gre.
pf: Since $N \nabla G$, the operation. is mell-defined.
The idendity Lan / associative law / inverse law $(e \cdot H) \cdot(g \cdot H)=(g \cdot e) H=g H \quad\left(g_{1} H\right) \cdot\left(g_{2} H\right) \cdot\left(g_{3} H\right)=\left(g_{1} H\right)\left[\cdot\left[g_{2} H\right) \cdot\left(g_{3} H\right)\right] \quad\left(g_{1} H\right)^{-1}=g_{2}^{-1} H$ all follows from that of the original gr G.

Def (quotient gre) Given $N \triangleright G$, then the gap ($\{$ coset of N\} , ~ \cdot) ~
is called the quotient gre of G by N. Denote it by G / N

Lagrange
Fact: $\quad|G / N|=\frac{|G|}{|N|}=[G: N]$

Example: $\quad S_{3}$ contains 6 elements.
FLip

$$
6=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Rotation

$$
\tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

Identity.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

Q: 1) $H_{1}=\langle 6\rangle$ How large is H_{1} ?
Is H_{1} normal in $G=S_{3}$?
2) $\mathrm{H}_{2}=\langle\tau\rangle$ How large?

Normal?

Ans. 1) $\tau_{\pi}^{-1} \sigma \tau=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right) \& H_{1}$
H_{1} not normal
2) $\left[S_{3}: H_{2}\right]=2$. So H_{2} must be normal in S_{3}.

$$
\mathrm{H}_{2} \quad 6 \cdot \mathrm{H}_{2} \quad 6 \mathrm{H}_{2}=\mathrm{H}_{2} 6
$$

Lemma. Given $H \subseteq G$, if $[G: H]=2$. then $H \otimes G$.
Pf: $H \triangleleft G \Leftrightarrow \quad g^{-1} H g=H \quad \forall g \in G$

$$
\Leftrightarrow \quad H g=g H \quad \forall g \in G
$$

right coset \uparrow left coset.

$$
\{h g \mid h \in H\} \quad\{g h \mid h \in H\}
$$

$$
\exists g_{1} \in G .
$$

But if $[G: H]=2$. the ${ }^{\exists} \quad G=H \cup H \cdot g_{1} H$

$$
g_{2} \in G_{1}=H \cup H \cdot g_{2}
$$

so $g_{1} H=H \cdot g_{2}$
Actually $\forall g \notin H$ we have $g H=g, H$

$$
H \cdot g_{2}=H \cdot g
$$

so. $\forall g \in G . \quad g H=H g$.
Another watched for 2). is to check

$$
\sigma^{-1} \tau \cdot \sigma \stackrel{?}{\epsilon}\langle\tau\rangle
$$

Lemma: ${ }^{y} \forall g \quad g^{H} g^{-1}=\underset{\uparrow}{=} \quad \Leftrightarrow$
$\forall g_{i} \quad g_{i} H g_{i}^{-1}=H \quad$ where g_{i} are within a set of representatives for left cosets of H.

$$
\text { (i.e. } G=\bigcup_{i=1}^{k} g_{i} H \quad, k=[G: H I) \text {. }
$$

Pf. Exercise.

This implies it is enough to check

$$
\sigma^{-1} \tau \sigma \quad \epsilon\langle\tau\rangle .
$$

After Class Rok:
The definition on normal subgeps require

$$
H \leq g^{-1} H g \quad \forall g \in G
$$

notice that by multiplying on bock sides. by g and g^{-1}

$$
g^{H} g^{-1} \subseteq H
$$

So $\quad H \leq g^{-1} H g \quad \forall g \in G \Leftrightarrow \quad H=g^{-1} H g \quad \forall g \in G$ This does not require a "size" argument in the lecture.

