
 

Recall we defined a normal subgrp NTC last time
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Fundamental Homomorphism Theorem for grps
Given f C Gz a grp homorphism then
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The map f is clearly the choice the point
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Definition of Alternating grp

Previously we consider elements in Su as
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Claim Elements in Sn can be written as a product of

disjoint cycles
Pf Fix 6 E Sn
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Then gives a partition of elements in 51 in

We claim each equivalence class is a cycle
II the equivalence class of 1 Denote c to be the size

of equivalence class
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so II has size at most k
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Lemma Elements in Su can always be written as a

product of transpositions means switch 2 letters in
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Any cycle can be written as a product of

transpositions There any 6 C Su can be writers

as product of transpositions
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6 G Gz Gm where 6 are disjoint cycles
in Sn
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If I Ej 6g are transpositions
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Rmk E and g commute because they are disjoint

but Gj and Gk might not commute
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Lemma Fix 6 E Sn The number of transpositions in

writing 6 is either all even or all odd
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We claim
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This gives a map S Is o i3 Zz

6 f G mod 2

It is a grp homomorphism since
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