Recall me defined. normal subgrp $N \nabla C$ last time.

- quotient gre a / N

Fundamental Homomorphism Theorem (for gros.)
Given $f: G_{1} \rightarrow G_{2}$ a gre homorphism, then.

$$
G_{1} /_{\operatorname{ker}(f)} \simeq \operatorname{Im}(f) \subseteq G_{2}
$$

Pf: We need to construct a grip
Recall $\operatorname{Ker}(f)$ is isomorphism between $G_{1} / \operatorname{Ker}(f)$ and $\operatorname{In}(f)$.
The $\operatorname{map} \tilde{f}$ is clearly the choice, the point is to show \tilde{f} is indeed an isomorphism (which means \tilde{f} is infective and surjectire).

$$
\begin{aligned}
\tilde{f}: G_{1} / \operatorname{Kar}(f) & \longrightarrow \operatorname{Im}(f) \\
g_{1} \cdot \operatorname{Ker}(f) & \longrightarrow f\left(g_{1}\right)
\end{aligned}
$$

\tilde{f} is well-defined : $\quad f\left(g_{1}\right) \stackrel{\downarrow}{=} f\left(g_{1} \cdot h\right) \forall h \in \operatorname{ker}(f)$

$$
\Rightarrow f\left(g_{1}\right) \cdot f(h)=f\left(g_{1}\right)
$$

f being gap homomorphism
\tilde{f} is injective: it suffices to show that $\operatorname{ker}(\tilde{f})=\{e\}$ \leq ci /kerf).

$$
\text { if } \tilde{f}(g \cdot \operatorname{ker}(f))=e \in G_{2}
$$

then

$$
\begin{array}{r}
f(g)=e \in C_{2} \Leftrightarrow g \in \operatorname{Ker}(f) \Leftrightarrow \\
g \cdot \operatorname{Ker}(f)=e \in G_{1}
\end{array}
$$

\tilde{f} is surjective: clearly because the target gnp is $I_{n}(f)$

Definition of Alternating grip

Previously we consider elements in S_{n} as - a map bijective betmen $\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$

- permutation of n letters.
g.
6: $\begin{array}{llll}1 & 2 & 3 \\ \downarrow & \downarrow & \downarrow \\ 2 & 3 & 1\end{array}$

cycle

T: 123
213

3 transposition

Claim: Elements in S_{n} can be written as a product of disjoint cycles.
Pf: Fix $\sigma \in S_{n}$.

We define "~" a relation among the letters.

$$
i \sim j \Leftrightarrow \exists \epsilon^{\exists \mathbb{Z}_{k^{\prime}}}(i)=j
$$

We claim 2 is an equivalence relation. \sim is zeflersive: $i \sim i$ since $\sigma^{\text {ord(}(s)}=e$
ie. choose $k=\operatorname{ord}(6)$ in S_{n}.
\sim is symmetric: $\quad i \sim j \Rightarrow j \sim i$
if $\sigma^{k}(i)=j$ then $\sigma^{-k}(j)=i$.
ord $(\sigma)-k$ (j)
\sim is transitive: $i \sim j$ jus \Rightarrow ins

$$
\begin{gathered}
\sigma^{k_{1}}(i)=j \quad \sigma^{k_{2}}(j)=s \quad \text { then } \\
\sigma^{k_{1}+k_{2}}(i)=s .
\end{gathered}
$$

Then ~ gives a partition of elements in $\{1, \cdots, n\}$.
We claim each equivalence class is a cycle.
[1]: the equivalence class of 1. Denote c to be the size of equivalence class.
 It suffices to show that the number of elements in $[1]$ equal to the minimal positive integer k st.

$$
\sigma^{k}(1)=1 .
$$

$$
\begin{aligned}
& {\left[\left[_{1}\right]=\left\{6^{n}(1) \mid n \in \mathbb{Z}\right\}\right.} \\
& =\left\{6^{n}(1) \mid 1 \leq n \leq k\right\} . \\
& \forall n=q \cdot k+r \\
& \quad \sigma^{n}(1)=6^{9 \cdot k+2}(1)=6^{r}(1)
\end{aligned}
$$

So $[1]$ has size at most. k.
Actually 217 has size equal to K. because.
$\sigma^{i}(1) \neq \sigma^{j}(1)$ for $i \neq j<k$.
(if $\sigma^{i}(1)=\sigma^{j}(1)$ then $\sigma^{i-j}(1)=1$
contradict with k being the smallest integer st.

$$
\left.\sigma^{k}(1)=1\right)
$$

Lemma. Elements in S_{n} can always be written as a product of transpositions.

$$
\text { means switch. } 2 \text { letters in }
$$ eg.

$$
n \text { letters. }
$$

$$
(i j) \in S_{n}
$$

Any cyde can be written as a product of transpositions. There any $G \in S_{n}$ can be written as product of transpositions.

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
1
\end{array} 23\right)=\underbrace{\left.\begin{array}{c}
\sigma_{2} \\
13
\end{array}\right) \cdot\binom{\sigma_{1}}{1}} \\
& 1 \xrightarrow{G_{1}} 2 \xrightarrow{G_{2}} 2 \\
& 2 \longrightarrow 1 \longrightarrow 3 \\
& 3 \longrightarrow 3 \longrightarrow 1 \\
& \left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)=\frac{(16 p(15) 0(14) 0(13) 0(12)}{a} \begin{array}{c}
c \\
c
\end{array} \quad d \quad e \quad f \quad(a d)(a c)(a b) \\
& { }_{\overbrace{<5}}{ }^{2} \underbrace{4}_{3}
\end{aligned}
$$

$\sigma=\underline{\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{m}}$ where σ_{i} are disjoint cydes in S_{n}.

$$
\begin{aligned}
& =\prod_{i}^{\pi} \sigma_{i} \\
& =\prod_{i}^{1} \prod_{i}^{\pi} \sigma_{i j} \quad \sigma_{i j} \text { are transpositions. }
\end{aligned}
$$

Rank. σ_{i} and σ_{j} commute because they are disjoint. but $\sigma_{i j}$ and $\sigma_{i k}$ might. not commute.

$$
6=\frac{6 \cdot(12) \cdot(21)}{\frac{1}{2}}
$$

Lemma: Fix $\sigma \in S_{n}$. The number of transipositions in writing 6 is either all even or all odd. Pf: We define an invariant of 6 .

$$
f(\sigma):=\#\{(i, j) \mid i<j, \quad \sigma(i)>\sigma(j)\}
$$

eg.

$$
\begin{align*}
& 6=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad f(6)=2 \\
& 6=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad f(6)=1 \\
& \xrightarrow{(123)} \\
& \begin{array}{lllllllll}
1 & 2 & 3 & (1,2) & 2 & 3 & \times & 21 & \checkmark \\
2 & 1 & 3 & (1,3) & 2 & 1 & \checkmark & 23 & x \\
(2,3) & 3 & 1 & \checkmark & 13 & x
\end{array} \tag{12}
\end{align*}
$$

We claim.

$$
f\left(\left(a_{i} a_{j}\right) \circ \sigma\right) \equiv f(\sigma)+1 \bmod 2
$$

$$
a_{1} \quad a_{2} \cdots a_{j} \cdots a_{i} \cdots a_{n}
$$

For $\left(s_{1}, s_{2}\right)$ where $s_{1}<s_{2}$ and $s_{1}, s_{2} \notin\{i, j\}$, they stay the same. Only need to consider (k, i) and $k, j)$ and ($i, k)(j, k)$.
(1) If $k<i$, then the contribution from (k, i) and (k, j) stays the same (since me just count whether $\left.a_{k}<a_{i}, a_{k}<a_{j}\right)$
(2) Similarly for $k>j$. The contribution form (i, s) \& (j, s) stays the same.
(3) For $i<k<j$.

If $a_{i}<a_{k}<a_{j}$. then.
$(i, k),(k, j)$ both do mot contribute to $f(6)$.
$(i, k),(k, j)$ both contribute to $f\left(\left(a_{i} a_{j}\right)=\sigma\right)$.
If $\quad a_{k}<a_{i}<a_{j}$, then.
only (i, k) contribute for $f(6)$
only (k, j) contribute to. $\left.f\left(a_{i} a_{j}\right)=6\right)$.
Depending on the order'y of $a_{i}, a_{k}, a_{j},(6$ cases).

This gives a map: $S_{n} \xrightarrow{g} .\{0,1\}=\mathbb{Z}_{2}$

$$
6 \longrightarrow f(6) \bmod 2
$$

It is a gre homomorphism since

$$
\begin{aligned}
g\left(\sigma_{1} \circ \sigma_{2}\right) & =g(\underbrace{\pi t_{1 j}}_{n \operatorname{tran}} \circ \underbrace{\pi t_{2 j}}_{m \operatorname{tran}}) \\
& =f(\underbrace{\prod_{1 j} t_{1 j}}_{n \operatorname{tran}} \circ \underbrace{\pi t_{2 j}}_{m t_{\text {tran }}}) \bmod 2 \\
& =\# \text { transpositions } \bmod 2=n+m \bmod 2
\end{aligned}
$$

$$
g\left(\sigma_{1}\right)+g\left(\sigma_{2}\right)=n+m \bmod 2
$$

Since $g((12))=1 \quad g(e)=0$. we also know g is sinjective.
$\operatorname{Def}($ Alternating Gap).
A_{n} is the subgrp of S_{n} that is $\operatorname{Ker}(g)$.
Equivalently, A_{n} is also the subgrp consists of permutations 6 st. $f(6)$ is even.

Cons. An is a subgrp of S_{n} with index 2 .

