Recall me defined normal subgrp NTG last time.
. gustiont grp
$$G_{N}$$

Fundamental Homomorphism Theorem (for grps)
Given $f: G_{1} \rightarrow G_{2}$ a grp homorphism, then.
 $G_{1}' = In(f) \in G_{2}$
Ker(f) \cong Recall Ker(f) is
pf: We need to construct a grp § $g \in G_{11} f(g) = e_{1}^{2}$
isomorphism between $G_{1}' = G_{2}$
The map \tilde{f} is clearly the choice, the point is to
show \tilde{f} is indeed an isomorphism (which means \tilde{f} is
injective and surjective).
 $\tilde{f}: G_{1}' = Jm(f)$
 $g_{1}: Kor(f) \rightarrow f(g_{1})$
 f is mell-defined : $f(g_{1}) \stackrel{=}{=} f(g_{1} h)$ the Ker(f)
 f is injective : it suffices to show that $Ker(\tilde{f}) = \xi e_{3}$
 $if $\tilde{f}: g_{1}: Kor(f) \stackrel{=}{=} e \in G_{2}$
 f is injective : it suffices to show that $Ker(\tilde{f}) = \xi e_{3}$
 $f = f(g_{1}) = e \in G_{2}$
 $f = f(g_{2}) = f(g_{2}) = f(g_{2})$
 $f = f(g_{2}) = f(g_{2}) = f(g_{2}) = f(g_{2})$
 $f = f(g_{2}) = f(g_{2}) = f(g_{2}) = f(g_{2})$
 $f = f(g_{2}) = f(g_{2}) = f(g_{2}) = f(g_{2})$
 $f = f(g_{2}) = f(g_{2}) = f(g_{2}) = f(g_{2})$
 $f = f(g_{2}) = f(g_$$

Definition of Alternating grip
Previously we consider elements in Sn as
a map bijective between
$$\{1, \dots, n\} \rightarrow \{1, \dots, n\}$$

permutation of n letters.
3.
6: $\frac{1}{2} = \frac{2}{3}$
 $\frac{2}{3} = \frac{2}{3}$

We define "~" a relation among the letters. $\exists k \in \mathbb{Z}, \\ i \sim j \leq 0 \quad (i) = j$ We claim r is an equivalence relation. \sim is reflective : $i \sim i$ since c cord(c) = e i.e. choose k= ord(6) in Sn.

~ is symmetric:
$$i-j = j-i$$

if $6^{k}(i)=j$ then $6^{-k}(j)=i$.
 $5^{m}d(e)-k$
 $6^{m}(i)=j$ $j-s =>i-s$
 $6^{k}(i)=j$ $6^{k_2}(j)=s$ then
 $6^{k_1+k_2}(i)=s$.
Then ~ gives a partition of elements in $51,...,n$.
We claim each equivalence class is a cycle.
[1]: the equivalence class of 1. Denote c to be the size
of equivalence class.
 $6^{(1)}$ It suffices to show that the number
 $i = 6^{2}(1)$ of elements in $i-j$ equal to the
 $minimal positive integer k s.t.$
 $6^{k}(1)=1$.
[1]: $\{6^{n}(1)\}$ $n \in \mathbb{Z}$.
 $i = 6^{n}(1)|$ $i \leq n \leq k$.
 k .

Actually Z1] has size equal to k. because.

$$6^{2}(1) \neq 6^{3}(1)$$
 for $i \neq j < k$.
($if \quad 6^{2}(1) = 6^{3}(1)$ then $6^{2-3}(1) = 1$
contradict with $\not\models$ being the smallest integer st.
 $6^{k}(1) = 1$)

Lemma. Elements in Sn can always be written as a
product of transpositions.
eg.
$$(123) = (15)o(12)$$

 $1 = (15)o(12)$
 $2 = (15)o(12)$
 $2 = (15)o(12)$
 $3 = (15)o(12)$
 $3 = (15)o(12)$
 $3 = (15)o(12)$
 $3 = (15)o(12)$
 $1 = (15)o(12)$
 $2 = (15)o(12)$
 $3 = (15)o(12)$
 $3 = (15)o(12)$
 $1 = (15)o(12)$
 $1 = (15)o(12)$
 $1 = (15)o(12)$
 $2 = (15)o(12)$
 $1 =$

$$6 = 6 \cdot (12) \cdot (21)$$

Lemma: Fix GESn. The number of transipositions in writing 6 is either all even or all odd. pf: We define an invariant of 6. $f(6) := \# \{(i,j) | i < j, G(i) > G(j) \}$ f(6) = 2cg. 6= (1 2 3) $f(\epsilon) = 1$ 6=(12) (123) 1 2 3 (1,2) (1,3)21 V 2 3 X 2 1 V 23 X 2 1 3 (z, **3**) 3 1 V 13 X (12)

We claim. $f((a_i, a_j)) \in G = f(G) + 1 \mod 2$ To show this. i j j n $6: \int 1 2 \cdots n$ $a_i a_i a_i a_i \cdots a_i \cdots a_n$ $(a_i a_i) \int J J$ a, az ... aj ai ... an For (S1, S2) where S, < S2 and S, S2 & Eij}, they stay the same. Only need to consider (k,i) and k, j) and (i,k) (j,k). 1) If k < i, then the contribution from (k, i) and (k, j) stays the same (since me just count whether Qk < Qi, Qk < Qj) Similarly for k>j. The contribution from (i.s) (j.s) stays the same. 3 For i<k<j. If $a_i < a_k < a_j$, then. (i,k), (k,j) both do not contribute to f(6). (i,k),(k,j) both contribute to $f((a; 2j)) \in J$. If $a_k < a_i < a_j$, then. only (i,k) contribute for f(6) only (k, j) contribute to $f(a; a_j) > 6$. Depending on the order's of Qi, Qk, Qj, (6 cases). J.

This gives a map: $S_n \xrightarrow{g} . \{o, 1\} = \mathbb{Z}_2$ $6 \longrightarrow f(6) \mod 2$

It is a grp homomorphism since

$$g(G_{1} \circ G_{2}) = g(\Pi t_{ij} \circ \Pi t_{ij})$$

$$= f(\Pi t_{ij} \circ \Pi t_{ij}) \mod 2$$

$$= f(\Pi t_{ij} \circ \Pi t_{ij}) \mod 2$$

$$= \# \text{ transpositions } \mod 2 = n + m \mod 2$$

$$g(6_1) + g(6_2) = n + m \mod 2$$
.
Since $g((12)) = 1$ $g(e) = 0$. we also know g is surjective.

Def (Alternating Grp). An is the subgrp of Sn that is Ker(g). Equivalently, An is also the subgrp consists of permutations 6 s.t. f(6) is even. Coro. An is a subgrp of Sn with index 2.