Recall from last time:

$$
f: S_{n} \longrightarrow \mathbb{Z}_{2}=\{0,1\}
$$

$\sigma \longrightarrow \#$ of transpositions in writing $6 \bmod 2$

$$
\text { \# of } \left.\left\{(i, j) \mid i<j, \quad \sigma_{1} i\right)>(i j)\right\} \bmod 2
$$

We proved that f is a arp homomorphism.
So $\quad A_{n}:=\operatorname{ker}(f)$
$(123) \in S_{3}$? even.
$(12)(13) \in S_{3}$? even
$(1234) \in S_{4}$? odd.
1
(14)(13)(12).
$(1234 \cdots n) \in S_{n} ?$
$(1 n)(1 n-1) \ldots(12)$$\quad\left\{\begin{array}{c}\text { even if } n \text { is oder. } \\ \text { odd if } n \text { is even. }\end{array}\right.$
$n-1$ transposition

Goal: Show that A_{n} contains no nou-trivial normal subgop when $n \geqslant 5$.

$$
\text { means } N \neq e \quad N \neq A_{n}
$$

Lemma: Given $6, \pi \in S_{n}$, say $\pi=\left(i_{1} i_{2} \ldots i_{k}\right)$

$$
\sigma \pi \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \cdots \sigma\left(i_{k}\right)\right)
$$

Pf. $\quad 6 \pi \sigma^{-1}\left(6\left(i_{j}\right)\right)=6 \pi\left(i_{j}\right)=6\left(i_{j+1}\right)$ or i_{1} if $j=k$.
Coningation by $\sigma \in S_{n}$ does not change the syce type.

$$
6 \cdot 66^{-1}
$$

$$
\pi=\pi_{1} \cdots \pi_{k}
$$ disjoint cycles.

eg.

$$
\begin{aligned}
& (123)^{-1}
\end{aligned}
$$

Exercise. If $H \triangleleft A_{n}$ for $n \geqslant 4$, and H contains one 3 -cycle, then $H=A_{n}$.

Idea: generate a cot of 3 -cycles via conjugation

Thu. For $n \geqslant 5$, A_{n} contains no non-trivial normal subgrps. (Rok. A4 does contain non-trinal normal subgroup).
Pf: It suffices to construct one 3-cycle in H.
Assume $\quad h \in H \quad h \neq e . \quad h=\pi_{1} \ldots \pi_{k}$

1) If h contains a long cycle, say π_{1}, of more than 4 elements. $\pi_{1}=\left(\begin{array}{lllll}1 & 2 & 3 & \cdots & r\end{array}\right) \quad r \geqslant 4$
$6=(123)$, then $6 \pi_{1} 6^{-1}=\pi_{1}{ }^{6}=(123)(123 \ldots 2)(321)$

$$
=(2314 \cdots r)
$$

$h^{6} \cdot h^{-1}=\pi_{1}^{6} \cdot \pi_{1}^{-1}$ because 6 commute with other π_{i}. is.

$$
\begin{aligned}
& =(2314 \cdots r) \cdot\left(\begin{array}{llll}
r-1 & 1
\end{array}\right) \\
& =(124)
\end{aligned}
$$

$$
\text { so } H=A_{n} \text {. }
$$

2) If h contains 2 -cycles, $h=(123)(456) \pi_{3} \cdots \pi_{k}$. pick $\sigma=(345)$ to take coningetion.

$$
6 \cdot(123)(456) \cdot 6^{-1}=(124)(536)
$$

$$
\begin{aligned}
h^{6} \cdot h^{-1} & =(124) \cdot(536) \cdot(321)(654) \\
& =(16345) K \text { this is a cycle conger then }
\end{aligned}
$$ or equal to 4. go back to 1).

31. if h contains only one 3-cycle, all ocher $x_{\text {; }}$ are transpositions. h^{2} is $3^{3-c y d e}$. go to exercise single. directly.
4). if h only contains transpositions.
$h=\pi_{1} \cdots \pi_{k} \quad \pi_{i}$ are all transpositions.
suppose $\pi_{1} \cdot \pi_{2}=(12)(34)$
pick

$$
\begin{aligned}
6=(124) & 6 \cdot \pi_{1}, \pi_{2} 6^{-1}=(24)(31) \\
h^{6} \cdot h^{-1} & =\left(6 \cdot \pi_{1} \pi_{2} 6^{-1}\right) \cdot\left(\pi_{1} \pi_{2}\right)^{-1} \\
& =(24)(31)(12)(34) \\
& =(14)(23)
\end{aligned}
$$

Notice $n \geqslant 5$. conjugation by $\sigma_{2}=\left(\begin{array}{llll}2 & 3 & 5\end{array}\right)$.

$$
[(14)(23)]^{G_{2}}=(14)(35)
$$

$(14)(23) \cdot(14)(35)=(235)$ go to exercise. P.

Def (Solvable Group). A finite gre G is called solvable if \exists a sequence of subseTS

$$
G_{0}=e \subseteq G_{1} \subseteq G_{2} \subseteq \cdots \subseteq G_{n}=G_{1}
$$

st.

1) $G_{i} \triangleleft G_{i+1}$
2) $\quad G_{i+1} / G_{i}$ is abelian.

Core. A_{n} is not solvable when $n \geqslant 5$.
Given $N \nleftarrow G$. where G is finite gp. Thu.
G is solvable \Leftrightarrow both N and C / N^{\prime} are solvable
pf: \Leftarrow If N is solvable.

$$
\begin{array}{cc}
N_{0}=e \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{r}=N \text { satisfying } \begin{array}{l}
N_{i}+N_{i+1} \\
\\
\\
N_{i+1} / N_{i} \text { is } \\
\\
\\
\\
\text { abelian. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
\left.Q_{0}=e \subseteq Q_{1} \subseteq Q_{2} \subseteq \cdots \quad Q_{s}=C / N \text { satisfying } \begin{array}{l}
Q_{i}+Q_{i+1} \\
\\
\\
Q_{i+1} / Q_{i}
\end{array}\right)
\end{aligned}
$$

Claim: Denote $P: G \longrightarrow G / N$

$$
\begin{array}{ccc}
U 1 & U 1 & \overrightarrow{\text { surg }} \\
P^{-1}(Q) & Q &
\end{array}
$$

$$
\left\{g^{\prime \prime} G \mid \rho(g) \in Q\right\}
$$

then $P^{-1}(Q)$ is also a subgp of G.

Then we claim thet $\rho^{-1}\left(Q_{0}\right)$

$$
e \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq \underset{\substack{N_{2} \\ N}}{\prime \prime} \subseteq \rho^{-1}\left(Q_{1}\right) \subseteq \rho^{-1}\left(Q_{2}\right) \subseteq \cdots \quad \subseteq \rho^{-1}\left(Q_{s}\right)=G .
$$

satisfying both conditions.

1) $\quad N_{i} \nLeftarrow N_{i+1} . \quad P^{-1}\left(Q_{i}\right) \nLeftarrow P^{-1}\left(Q_{i+1}\right)$.
2) $\frac{N_{i+1}}{N_{i}}$ is aselian ad. $\frac{\rho^{-1}\left(Q_{i+1}\right)}{\rho^{-1}\left(Q_{i}\right.} \simeq \frac{Q_{i+1}}{Q_{i}}$ is abelian.

[To show the isomorphism.

$$
P^{-1}\left(Q_{i+1}\right) \xrightarrow{P} \frac{Q_{i+1}}{Q_{i}}
$$

P is surj grp hom with ker $=\rho^{-1} \cdot\left(Q_{i}\right)$
\{e\}
then by fudamatal hom thm.

$$
\left.\frac{\rho^{-1}\left(\theta_{i+1}\right)}{\rho^{-1}\left(\theta_{i}\right)} \simeq \frac{\theta_{i+1}}{\theta_{i}}\right]
$$

$\left[\begin{array}{ll}\text { Rmk: if } e \forall N \nabla G & \text { and } N \leq H_{1} \subseteq H_{2} \subseteq G . \text { then. } \\ \frac{H_{2} / N}{H_{1} / N} \simeq \frac{H_{2}}{H_{1}} & \\ \text { given } H_{1} / N \nabla H_{2} / N . & \text { Refered to 3rd homomonphisn }\end{array}\right]$ grps.
2)" " Suppose G is solvable

$$
e \subseteq G_{1} \subseteq C_{2} \subseteq \cdots \quad \leq G_{n}=G_{1} \quad \text { s.t. } \quad \text { 1) } G_{i}+G_{i+1}
$$

then given $N \triangleleft G$; aselion.

We dam $N_{i}+N_{i+1}$ and N_{i+1} / N_{i} is abelian.

$$
\begin{aligned}
& e \subseteq G_{1} \cap N \subseteq G_{1} \cap N \subseteq \cdots \subseteq G_{n} \cap N=N \\
& \stackrel{\prime \prime}{\prime \prime} \quad \stackrel{\prime \prime}{N_{2}} \quad N_{n}^{\prime \prime}
\end{aligned}
$$

(1) $N_{i} \nabla N_{i+1}$ because
$r \in G_{i+1}$ we know $r \cdot G_{i} r^{-1}=G_{i} \subseteq G_{i+1}$.

$$
\gamma \cdot\left(G_{i} \cap N\right) \gamma^{-1} \subseteq r G_{i} \gamma^{-1} \cap r N \gamma^{-1}=G_{i} \cap N \text { then } \checkmark \text {. }
$$

2.) N_{i+1} / N_{i} is abelian. be cause

$$
\begin{aligned}
f: N_{i+1} & \longrightarrow G_{i+1} / G_{i} \\
n & \longrightarrow n G_{i}
\end{aligned}
$$

is a grph homomorphism with kernel $\operatorname{Ker}(f)=N_{i+1} \cap G_{i}$

$$
\begin{aligned}
& =N \cap C_{i+1} \cap G_{i} \\
& =N \cap G_{i}=N_{i} .
\end{aligned}
$$

So by findamental how the.

$$
\frac{N_{i+1}}{N_{i}} \simeq \operatorname{Im}(f) \subseteq G_{i+1} / G_{i}
$$

is abelian since G_{i+1} / G_{i} is abelian.
$\left[\begin{array}{l}\text { We leave the argument for G/N being solvable in the } \\ \text { homework. }\end{array}\right]$
Cons. S_{n} is $n \pi$ solvable. for $n \geqslant 5$. because $A_{n} \nabla S_{n}$ is not solvable.

