Recall from last time: $f: S_n \longrightarrow \mathbb{Z}_2 = \{o, i\}$ 6 ---- # of transpositing in writing 6 med 2 = # of {(i,j) i=j, 6(1)>6(j)} mod 2 We proved that f is a grp homomorphism. So An := Kar(f) (123) E Sz? even. (12)(13) E Sz? even odd. (1234) E S4 ? (14)(13)(12). seven if n is odd. (1234.... h) E Sn? lodd it n is even. (IN)(I MT) (12) n-1 transposition Goal: Show that An contains no non-trivial normal subgop means N = e N = An when n35. Lemma: Given 6, TESn, say z= (i, iz ··· ik) $6\pi 6' = (6(i_1) 6(i_2) \cdots 6(i_k))$ or $i_1 i_j = k$. $6\pi 6' (6(i_j)) = 6\pi (i_j) = 6(i_{j+1})$ Рf. Conjugation by 6 E Sn does not change the cycle type. $\pi = \pi_1 \cdots \pi_k$ 6 · · 6 ⁻¹ disjoint cycles.

eq. (123)
$$\cdot (65 + 3 + 21) \cdot (3 + 1) = (65 + 132)$$

(123)⁻¹
Exercise. If $H = A_n$ for $n \ge 4$, and H contains
one 3 -cycle, then $H = A_n$.
Iden: generate a lot of 3 -cycles via conjugation
Thm. For $n \ge 5$, A_n contains no $h = n - trivial$ normal
subgrps. (Pmk. A4 obes contain non $- trivial$ normal
subgrp).
Pf: It suffices to construct one 3 -cycle in H .
Assume $h \in H$ $h \neq e$. $h = \pi_1 \cdots \pi_k$
1) 2f h contains a long cycle, say π_1 , of more than
4 doments $\pi_1 = 11 \ge 3 \cdots r > r \ge 4$
 $6 = (123)$, then $6 \pi_1 c^{-1} = \pi_1^{c} = (123)(123 \cdots r)(s21)$
 $= (231 + \cdots r)$
 $h^{c} \cdot h^{-1} = \pi_1^{c} \cdot \pi_1^{-1}$ be cause c commute with other π_1 .
 $i \ge 1$.
 $= (124)$ so $H = A_n$.
i) If h contains $2 = 3$ -cycles , $h = (133)(4 \pm 6) \pi_3 \cdots \pi_k$.
pick $6 = (3 + 5)$ to take conjugation.
 $c \cdot (123)(4 \pm 6) \cdot c^{-1} = (124)(536)$

$$h^{6} \cdot h^{-1} = (124) \cdot (536) \cdot (321) \cdot (654)$$

$$= (16345) \leftarrow this is a cycle longer than
pregnal to 4, go back to 12.
3). if h contains only one 3-cycle, all other π_i ;
are transpositions. h^2 is $\int_{-2}^{2} - cycle$. go to exercise
single · directly.
4). if h only contains transpositions.
 $h \equiv \pi_1 \cdots \pi_k$ π_i are all transpositions.
 $h \equiv \pi_1 \cdots \pi_k$ π_i are all transpositions.
Suppose $\pi_1 \cdot \pi_2 \in (12)(34)$
pick
 $6 \equiv (124) \quad 6 \cdot \pi_1, \pi_2 \in 6^{-1} \equiv (24) (31)$
 $h^6 \cdot h^{-1} = (6 \cdot \pi, \pi_2 \in 7) \cdot (\pi, \pi_2)^{-1}$
 $= (124)(31) (12)(34)$
 $= (14)(23)$
Notice $n \ge 5$. Conjugation by $6_{2} \le 35$.
 $[(14)(23)]^6 = (14)(35)$
 $(14)(35) = (235)$ go to exercise. \square .$$

Def. (Solvable Group). A finite grp G is called solvable
if
$$\exists$$
 a sequence of allotps
 $G_0 = e \leq G_1 \leq G_2 \leq \cdots \leq G_n = G$
St.
1) $G_1 \leq G_{1+1}$
2) G_{1+1}/G_1 is obelian.
Coro An is not solvable when $n \geq S$.
Given $N \leq G$. where G is finite grp.
Thm.
G is solvable (\Rightarrow) both N and
 G_N are solvable.
No=e $\leq N_1 \leq N_2 \leq \cdots \leq N_r = N$ satisfying $N_1 \leq N_{1+1}$
 $N_1 \leq N_{1+1}$
 $Q_0 = e \leq Q_1 \leq Q_2 \leq \cdots \leq Q_s = G_N$ satisfying $A_1 = Q_{1+1}$
 $Q_{1+1} \leq Solvable$.
 $Q_0 = e \leq Q_1 \leq Q_2 \leq \cdots \leq Q_s = G_N$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1$
 $G_2 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_1 = Q_{1+1}$
 $G_1 = G_1$
 $G_1 = G_1$
 $G_2 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_2 = Q_1$
 $G_1 = G_1$
 $G_1 = G_1$
 $G_2 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_2 = Q_1$
 $G_1 = G_1$
 $G_2 = G_1 \leq Q_2 \leq \cdots \leq Q_s = G_1$ satisfying $A_2 = Q_1$
 $G_1 = G_1$
 $G_2 = G_1$
 $G_1 = G_2$
 $G_2 = G_1$
 $G_1 = G_1$
 $G_2 = G_1$
 $G_1 = G_2$
 $G_1 = G_1$
 $G_2 = G_1$
 $G_1 = G_2$
 $G_2 = G_1$
 $G_2 = G_1$
 $G_1 = G_2$
 $G_2 = G_1$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_1$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_2$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_2$
 $G_1 = G_2$
 $G_2 = G_2$
 $G_2 = G_2$
 $G_2 = G_2$
 $G_3 = G$

then p⁻¹(Q) is also a subgep of G.

Then we claim that
$$p'(Q_0)$$

 $e \in N_1 \in N_2 \in \cdots \in N_1' \subseteq p'(Q_1) \subseteq p'(Q_2) \subseteq \cdots \subseteq p'(Q_3) = G.$
satisfying both conditions.
1) $N_1 \triangleleft N_{i+1}$, $p''(Q_1) \triangleleft p''(Q_{i+1})$.
2) N_{i+1} is addian and $\frac{p'(Q_{i+1})}{p'(Q_1)} \stackrel{d}{\longrightarrow} \frac{Q_{i+1}}{Q_i}$ is addian.
 $p'(Q_{i+1}) \stackrel{f}{\longrightarrow} \frac{Q_{i+1}}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f}{\longrightarrow} \frac{Q_{i+1}}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f}{\longrightarrow} \frac{Q_{i+1}}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f}{\longrightarrow} \frac{Q_{i+1}}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{\longrightarrow} \frac{p'(Q_{i+1})}{Q_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{\square_i}$
 $p'(Q_{i+1}) \stackrel{f'(Q_{i+1})}{\longrightarrow} \stackrel{f'(Q_{i+1})}{\square_i}$

then given NAG,

We claim
$$N_{i} \forall N_{i+1} = ad = N_{i} \forall N_{i} is abelian.$$

 $e \leq C_{i} \cap N \leq C_{2} \cap N \leq \dots \leq C_{n} \cap N = N$
 $N_{i} = N_{2}$
 $N_{i} = N_{2}$
 $(D = N_{i} \forall N : +_{1} = because$
 $Y \in G_{i+1} = me know = Y \cdot G_{i} Y' = G_{i} = G_{i+1}.$
 $Y \cdot (G_{i} \cap N) Y' \in Y G_{i} Y' \cap Y N Y' = G_{i} \cap N = then Y.$
 $(D = N_{i} \cdot n_{i}) Y_{i} = s abelian. be cause$
 $f : N_{i+1} \longrightarrow G_{i+1}/G_{i}$
 $n \longrightarrow nG_{i}$
 $is a grp homomorphism with kernel (ker(f) = N_{i} \cap G_{i})$
 $= N \cap G_{i+1} \cap G_{i}$
 $is a grp homomorphism with kernel (ker(f) = N_{i} \cap G_{i})$
 $= N \cap G_{i+1} \cap G_{i}$
 $is a grp homomorphism with kernel (ker(f) = N_{i} \cap G_{i})$
 $= N \cap G_{i} = N_{i}.$
 $5o by finalemental hom them.$
 $\frac{N_{i+1}}{N_{i}} \simeq Im(f_{i}) \subseteq G_{i+1}/G_{i}$
 $is abelian since $G_{1} \cap G_{i}$ is abelian.
 $[We leave the argument for G_{i} being solvable in the final more home.]$
 $home more.$
 $Gro. S_{n}$ is not solvable. for $n \geq 5$.
 $because A_{n} \forall S_{n}$ is not solvable.$