Sylow Theorem.

Recall the theorem of Lagrange, it HEG a subgrp
of G. then IHI/IGI
Q: if $n G $, does there exist subgrp $H \leq G$ s. f
1+ = n!
Set up $ G = p^{\alpha} \cdot m \cdot p \neq m$.
Det (Sylow p subgrp) $ G = p^{\alpha} m with p f m. then$
a subgrp HEG is called a Sylow-p subgrp it
$ \mathcal{H} = p^{\alpha}$
General Answer for Q. is negative, but in this speciel
case. p ^d .m= G ptm. the answer is yes for p ^d .
If this holds, $ G =n=P_1^{r_1}\cdot P_2^{r_2}\cdot P_3^{r_3}\cdot \cdots P_k^{r_k}$. $(P_i\neq P_j)$
suppose. for each \dot{z} . $\exists H_i \subseteq G$. $ H_i = P_i^{r_i}$.
maybe G = H1×H2×H3×···×HK (direct product)
$\int s_{i}de : G_{i} \times G_{2} = G_{i} \cdot G_{2} $
og. G= Sz V (the smallest non-abelian finite grp.)
go through all finite
grp with order 55.

What is Sylow -3 subgap of S3? A3 (
$$\simeq C_3$$
).
1531=6 = 2×3.
G₃ = A₂ G₂ = < (12)>
notation for
Sylow -3 subgap < <(13)>
(Fact: there may be more than one Gp for G and p.)
G₃ × G₂ ¥ S3 since there exists elements of
Order 6 in C3× C2, but
no such clement in S3.
or @ abelian # non-abelian.
Det (nilpotent gp). G is called nilpotent if
G $\simeq T_{Plicl}G_{p}$.
Sylow -3 subgaps are conjugate to
each other (it H. H. and book Sylow -p
subgaps, then $\exists g \in G$ s.t
 $g^{H_1}g^{H_2} = H_2$)
c) n_p to the # of Sylow-p subgaps of C
 $n = p^{Q_1}m$. then.
 p^{M_1} @ np = 1 (mod p)

Tool: Grp action. Det (Gyp action). A gyp action is gyp homomorphism. $\phi: G \longrightarrow Porm(X) (\simeq S_n \rightarrow n=|X|)$ where the grp operation in Perm(X) is composition. d: G -> Perm(X) Def (transitive) A grp action is transitive it. $\forall x, y \in X, \exists g \in G \text{ s.t. } \varphi(g)(x) = y$ in short. we will write g*x=y. Example Ginen H = G. X = { left cosets of H } $\phi: G \longrightarrow Perm(X)$ is this a bijection $X \longrightarrow X$? () \$19) is surjective : If y H in X. we can find. g.y.H in X s.t. g.(g., y.H) = y.H since X has finite size. X is injective.

 $\phi(g_1) \circ \phi(g_2) (x H) = \phi(g_1) \cdot (g_2 \cdot x H)$

$$= g_1 \cdot g_2 \cdot \times H$$

•

/

So
$$\phi(g_1, g_2) = \phi(g_1) \cdot \phi(g_2)$$

Q: Is this ϕ transitive?
 $Y g_2H \cdot g_1H$, we can find $g_2g_1g_2^{-1} \in G$. s.t.
 $\phi(g)(g_2H) = g_1g_2^{-1}g_2H = g_1H$.
Def (stabilizer, orbit) ϕ is a gap action. $x \in X$.
then Y Stabs: = $\{g \in G_1 \mid g \neq X = X\}$ and.
 $Gdit \quad O_X := \{g \in X \mid \exists g \quad \text{s.t.} \quad g \neq X = y\}$
Lemma: $Stab_X$ is a subgrp of G.
Pf: $f \quad g_1 \in Stab_X$ then $g_1 \neq X = X$.
 $f \quad g_1 \in Stab_X$, $g_2 \in Stab_X$, then
 $(g_1 \cdot g_2) \neq X = g_1 \times (g_2 + X)$
 $= g_1 \neq X = X$.
 $f \quad g_1 \notin Stab_X = g_1 \times (g_2 + X)$
 $= g_1 \neq X = X$.
 $f \quad g \notin define \quad x \sim y \quad in \ X. \quad f \quad \exists g \notin G \quad \text{s.t.}$
 $g \neq X = y$. Then $T = T$ is an equivalence relation.

easy .

For D.	surj: g'Hg -> H
2)	$g_{1} \cdot g_{2} + (g_{1} \cdot g_{2})^{T} = g_{1} \cdot (g_{2} + g_{2}^{-T}) \cdot g_{1}^{-T}$
Det·(n N _H	ormalizer). Given $H \subseteq G$, we define. := $\{g \in G g H g' = H\}$.
Fact:	NHZH, is another subgrpot G. Numin the conjugation action of G on Esubgrps
5-600 _H =	