Proof of Sylow Theorem using Cip Actions
Recall
(Sylow Thm)
a) Sylow p-subgrip exists.
b) All Sylow p-subgrips are conjugate to each other.
(H, His are both Sylow p-subgrips, then

$$\exists \sigma \in G$$
 s.t $GH, G'' = H_2$
c) Denote h_p to be $\#$ of Sylow p-subgrips.
 \square $h_p \mid m$
 \square $h_p \equiv 1 \pmod{p}$
 $p^{*}S \equiv g \cdot S$
 $IXI \equiv \begin{pmatrix} p^{N,m} \\ px \end{pmatrix}$
We claim that. when Phen $\begin{pmatrix} p^{N,m} \\ p^{N} \end{pmatrix} \neq 0 \pmod{p}$.
 $EX \xrightarrow{P}_{i}H_{int}: \cot powers of P in numerator
 $p^{N}_{i}(p^{N}_{-1}) \cdots p^{N}_{-1}$$

By Stabilizer - Orbit Formla.

$$|x| = \sum_{D} |0| = \sum_{D} \frac{|G|}{|Stable(x)|} \neq 0 \pmod{P}$$
pick $x \in O$

$$\frac{|x| \in X}{|Stabl(x)|} \text{ is exactly contains } p^{N-1} \text{ in the size.}$$
as the factor at p . then. it contradicts with.

$$|X| \neq 0 \pmod{P}$$

$$= \sum_{D} \frac{|O|}{|Stable(x)|} \frac{|Stable(x)|}{|Stable(x)|}$$

$$x = S \subseteq G \quad \text{is a certain subset of } G$$

$$H = Stab(x) \quad S = \{S_1, \dots, S_{P^N}\}$$

$$|S| = p^{N} \quad Stab(S_i) = \{h \in H| h \cdot S_i = S_i\}$$

$$= [e]$$

$$|S| = \sum_{D} |O| = \sum_{D} \frac{|H|}{|Stable(S_i)|} = \sum_{D} |H| = |H| \cdot |O|$$

$$p^{N} \quad S_i \in O$$

 \square .

 $\Rightarrow |H| | P^{\alpha}$ $\Rightarrow |H| = P^{\alpha}.$

Proof of Sylow (b).
Suppose H₁ H₂ are two Sylow p subgrps :
H₁
$$X = \{ icht cosets of H_2 \}$$

 $h_1 \neq gH_2 = (h_1g) \cdot H_2$
 $H \rightarrow G \rightarrow Por(X)$
 $|X| = \frac{|G|}{|H_2|} = m \neq 0 \pmod{p}$
 $||$
 $||X| = \frac{1G}{|H_2|} = m \neq 0 \pmod{p}$
 $||X| = \frac{1}{|H_2|} = m \neq 0 \pmod{p}$
 $||X| = \frac{1}{|H_2|} = m \neq 0 \pmod{p}$
 $||X| = \frac{1}{|H_2|} = \frac{1}{|X|} =$

Proof of Sylow (C)

$$G \qquad X = \{ all Sylow P subgrps \}$$

$$g \neq H = gHg^{i}$$
by Sylow (b). G acts transitively on X.

$$|X|=|O| = \frac{|G|}{|S(bb(n))} = d | m.$$

$$y \neq eX$$
Sog X = H
Stabl(H) = $\{g \in G| g, Hg^{i} = H\} = normalizer of H$

$$H \subseteq Stabl(H) \subseteq G$$

$$St. H \exists M.$$
Obverve

$$H \subseteq Stabl(H) \subseteq G$$

$$= 0 \quad n_{p} | m.$$
Let H be a Sylow p subgrp.

$$H \qquad X = \{ all Sylow - p \leq bgrp\}$$

$$n_{p} = \sum_{0}^{\infty} |O| \quad For example: the ordit f H is H$$

$$Stabl(H) = H$$

$$|O| = 1$$

$$h H h^{-i} = H$$

For other Sylow-P subgrp, say
$$H_{i} \neq H \in X$$
.
Stab $(H_{i}) = \{h \in H | h: H_{i}: h^{T} = H_{i}\} = H \cap Norm(H_{i})$
Our goal is to show that $n_{p} = 1 \mod p$.
Notice that: $\frac{|H|}{|Stab(x_{i})|}$ is a divisor of $|H|$.
Notice that: $\frac{|H|}{|Stab(x_{i})|}$ is a divisor of $|H|$.
Notice that: $\frac{|H|}{|Stab(x_{i})|}$ is a divisor of $|H|$.
 $Di = 1$
If Stab $(H_{i}) = H$ then. $H_{i} \operatorname{Norm}(H_{i}) = H$
 p_{i} $H \subseteq Norm(H_{i})$ mormal.
 $H = H_{i}$ H_{i} $H = Norm(H_{i})$
 $But Sylow (b) tells us that
 $GH_{i}e^{T} = H_{i} \forall e \in Norm(H_{i})$ $H_{i} \in Norm(H_{i})$
 $H = H_{i}$$

$$=> H = H,$$

$$=> H = H,$$

$$=> \Sigma |0| = 1 + \Sigma |0| = 1 + \Sigma p - ponence = 1 \mod p$$

$$=> D$$

$$=> D$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

Example: Find all gips with order 15.

$$G_{3} = (Z_{3}, +)$$

 $G_{3} = (Z_{3}, +)$

How many. $G_5 =?$ $g^{n_5} \equiv 1 \mod 5$ $n_5 \equiv 1 \mod 5$ $n_5 \equiv 1 \mod 5$

$$\begin{cases}
 n_3 \equiv 1 \mod 3 \\
 n_3 \mid 5
 \\
 n_3 \mid 5$$

We have found all subgrops of
$$G$$
.
Lemma:
If N., H are both normal in G. and
 $i> NAH = Fe$.
 $2) N H = G$.
then $G = N \times H$.
Ans: $G = C_5 \times C_3 = C_{15}$.
 $[G] = n = P_1 \cdot P_2$ where. $P_1 \neq 1 \mod P_2$.
 $P_2 \neq 1 \mod P_1$.
 $P_2 \neq 1 \mod P_1$

then G = CPIP2