Proot of Sylow Theorem using Cop Actions

Recall
(Sylow Thm)
a) Sylow p-subgrp exists.

G: finite gup

$$
|G|=n=p^{\alpha} \cdot m
$$

płm
b) All sylow p-subgups are coningate to each ocher. it H_{1}, H_{2} are boh sylow p-sabopps, then $\exists \sigma \in G$ s.t $\sigma H_{1} \sigma^{-1}=H_{2}$
c) Denste n_{p} to be \# of Syow p-subgrps.
(1) $n_{p} \mid m$
(2) $\quad n_{p} \equiv \mid(\bmod p)$

Proot of Sylow a):

$$
\begin{gathered}
G=\left\{S^{\alpha} \leq G| | S \mid=p^{\alpha}\right\} \\
g * S=g \cdot S
\end{gathered}
$$

$$
|x|=\binom{p^{\alpha} \cdot m}{p^{\alpha}}
$$

We claim that. when płm $\binom{p^{\alpha} \cdot m}{p^{\alpha}} \not \equiv 0(\mathrm{mod} p)$. Ex $P_{\text {: Hint: }}$ cont pavers of P in numerator and denominator. $\frac{p^{\alpha} \cdot m\left(p^{\alpha} \cdot m-1\right) \cdots\left(p^{\alpha} \cdot m^{\prime \prime}-p^{\alpha}+1\right)}{p^{\alpha} \cdot\left(p^{\alpha}-1\right) \cdots 1}$

By Stabilizer - Orbit Formula.

$$
|x|=\sum_{0}|0| \stackrel{L}{=} \sum_{0} \frac{|a|}{|\operatorname{stab}(x)|} \neq 0(\bmod p)
$$

$$
\forall x \in X
$$

If $V|S \operatorname{tab}(x)|$ is exactly contains $p^{\alpha-1}$ in the size. as the factor at P. then. it contradicts with. $|x| \neq 0(\bmod p)$

$$
\Rightarrow \exists 0 \quad \text { st. } p^{\alpha}| | \operatorname{stab}(x) \mid
$$

$x=S \subseteq G$ is a certain subset of G

$$
\begin{aligned}
& H=S_{\operatorname{tab}}(x) \triangleleft S=\left\{s_{1}, \cdots, \quad s_{p^{\alpha}}\right\} \\
& |s|=p^{\alpha} \quad s_{\operatorname{tab}}\left(s_{i}\right)=\left\{h \in H \mid \quad h \cdot s_{i}=s_{i}\right\} \\
& =\{e\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad|H| \mid P^{\alpha} \\
& \Rightarrow \quad|H|=p^{\alpha} \text {. }
\end{aligned}
$$

Proof of Sylow (b).
Suppose $H_{1} \quad H_{2}$ are tmo Sylow P silesps.

$$
\begin{aligned}
& \mathrm{H}_{1}>\mathrm{X}=\left\{\text { lett cosets of } \mathrm{H}_{2}\right\} \\
& h_{1} * g H_{2}=(h i g) \cdot H_{2} \\
& H \longrightarrow G \rightarrow \operatorname{Per}(X) \\
& |x|=\frac{|G|}{\left|H_{2}\right|}=m \not \equiv 0(\text { mad } p) \\
& 11 \\
& \sum_{0}|0|=\sum_{0} \frac{\left|H_{1}\right|}{\substack{|\operatorname{seb} b(x)| \\
x \in O}} \not \equiv 0(\bmod p) \\
& \Rightarrow \exists 0 \text { s.t. } \quad \operatorname{Stah}(x)=H_{1} \\
& \text { 正 }
\end{aligned}
$$

suppose $x=g \cdot H I_{2}$

$$
\begin{gathered}
H_{1} \cdot g H_{2}=g H_{2} \\
\pi \\
g^{-1} \cdot H_{1} \cdot g H_{2}=H_{2} \\
\mathbb{I I} \\
g^{-!} H_{1} g \subseteq H_{2} \\
\| \\
g^{-1} \cdot H_{1} \cdot g=H_{2} \text { since } \quad\left|H_{1}\right|=\left|H_{2}\right|
\end{gathered}
$$

Proot of Sylow (c)

$$
G \curvearrowright X=\{\text { all Sylow } p \text {-susgrps }\}
$$

$$
g * H=g H g^{-1}
$$

by Sylaw (b). G acts transitively on X.

$$
\left.|x|=|0|=\frac{|G|}{\substack{\mid S_{\operatorname{tab}(x)} \underset{\forall x}{ } \in X}}=d \right\rvert\, \mathrm{m} .
$$

Say $x=H$

$$
\operatorname{Stab}(H)=\left\{g \in G \mid \quad g \cdot H g^{-1}=H\right\}=\text { normalizer of } H
$$

爬
the largest subsip M of G s.t. $H \nabla M$.

Obverve

$$
H \subseteq S \operatorname{tab}(H) \subseteq G
$$

\Rightarrow (1) $n_{p} \mid m$.

Let H be a Sylow p-sulgyp.

$$
\left.H{ }_{x}^{\text {coj. }} \text { all sylow-p absp }\right\}
$$

$n_{p}=\sum_{0} 101$ For exauple: the orbit of H is H

$$
\begin{gathered}
S \operatorname{tab}(H)=H \\
101=1 \\
h H h^{-1}=H
\end{gathered}
$$

For other Sylow-P subgrp, say $H_{1} \neq H \in X$.

$$
\operatorname{Stab}\left(H_{1}\right)=\left\{h \in H \mid \quad h \cdot H_{1} \cdot h^{-1}=H_{1}\right\}=H \cap \operatorname{Norm}\left(H_{1}\right)
$$

Our goal is to show that $n_{p} \equiv 1 \mathrm{mod} p$.
Notice that. $\frac{|-1|}{|\operatorname{Stab}(x)|}$ is a divisor of $|1-1|$ which is $\neq 0$ and p only when $S \operatorname{tab}(x)=H$.
尔.

$$
|O|=1
$$

If $\operatorname{Stab}\left(H_{1}\right)=H$ then. $H \cap N \operatorname{Norm}\left(H_{1}\right)=H$

リ
$H \subseteq \operatorname{Norm}(H$,
H, H_{1} are both Sylow-P subgrps of $\operatorname{Norm}\left(H_{1}\right)$
but Sylow (6) tells us that

$$
\exists 6 \in \operatorname{Norm}\left(H_{1}\right)
$$

$$
6 \mathrm{H}_{1}^{-1}=\mathrm{H}
$$

$$
6 H_{1} 6^{-1}=H_{1} \forall 6 \in \operatorname{Nom}\left(H_{1}\right) H_{1} \varnothing \operatorname{Norm}\left(H_{1}\right)
$$

$$
\Rightarrow \quad H=H 1
$$

$$
\Rightarrow \quad \sum_{0}|0|=1+\sum_{0}|0|=1+\sum_{0} p \text {-powers } \equiv 1 \text { mod } p \text {. }
$$

Example: Find all sips with order 15.

$$
\begin{aligned}
15=5 \times 3 . & G_{5}=\left(\mathbb{Z}_{5},+\right) \\
& G_{3}=\left(\mathbb{Z}_{3},+\right)
\end{aligned}
$$

How many.

$$
\begin{aligned}
& G_{5}=?\left\{\begin{array}{l}
n_{5} \equiv 1 \bmod 5 \\
n_{5} \mid 3
\end{array}\right. \\
&\left\{\begin{array}{l}
n_{3} \equiv 1 \bmod 3 \Rightarrow n_{3}=1 \\
n_{3} \mid 5
\end{array}\right.
\end{aligned}
$$

We have found all subgops of G.
Lemma:
If $\mathrm{N} ., \mathrm{H}$ are both normal in C . and.

$$
\text { 1) } N \cap H=\{e\} \text {. }
$$

2) $N \cdot H=G$.
then $\quad G=N \times H$.
Ans: $\quad G=C_{5} \times C_{3}=C_{15}$.
$|G|=n=P_{1} \cdot P_{2} \quad$ where.
$P_{1} \neq 1 \bmod P_{2}$.
($P_{1} \neq P_{2}$)
$P_{2} \neq 1 \bmod P_{1}$
then $G=C_{P_{1} P_{2}}$
