Galois Theory.

Mutivation: How to solve a polynomial equation?

$$n^{-2} = ax^{2} + bx + c = 0 \qquad x = \frac{-b \pm \sqrt{b^{2} + 4ac}}{2a}$$

$$h=3 \quad (1500+) = ax^{3} + bx^{2} + cx + d=0 \qquad \Delta_{0} = b^{2} - 3ac$$

$$a_{1} = 2b^{2} - 9abc + 27a^{2}d$$

$$c = \sqrt[3]{\frac{\Delta_{1} \pm \sqrt{\Delta_{1}^{2} - 4a^{2}}}{2}}$$

$$r_{k} = -\frac{1}{3a} \cdot (b \pm C \cdot \sqrt[3]{k} + \frac{\Delta_{0}}{\sqrt[3]{k}c}) \qquad z$$

$$r_{k} = 0, 1, 2 \qquad \sqrt[3]{3} = \sqrt[3]{3}.$$

$$h=4 \quad f(x) = ax^{4} + bx^{3} + cx^{2} + dx + e=0 \quad (1500 \pm 1)$$

$$a: Can \quad you \quad still \quad find \quad a \quad formula \quad for \quad a \quad generic \quad guartic \quad polynomial? \quad (Ask \quad goo gle \quad /wiki \).$$
Ans: Yes.

$$n=5, \quad f(x) = \sum_{n \in S} (n \times n) \quad Ans; No.$$

Such a formula also not exist for n>4. (1800+)

Det
$$(F - automorphism of K)$$
 Given a field extension K/F .
Aut $(K/F):=(\{G: K \rightarrow K \mid G(A)=A \forall A \in F \\ G is An isomorphism (ring)\}, composition)$
is a gap. $G is F - automorphism of K$
called
eg. If $a = \{G: Ff_{5} \rightarrow Ff_{4} \mid G is a ring isomorphism \}$ forms a
 $I = F_{p}$ grp welve composition.
 $I \rightarrow I = F_{p} = F_{p}$

eg.
$$Q[\overline{NZ}]$$
 $Q \xrightarrow{id} Q$
 $\int Galvis$
 $G \xrightarrow{id} Q$
 G

$$6: \mathbb{Q}[\overline{J}\overline{z}] \longrightarrow \mathbb{Q}[\overline{J}\overline{z}]$$

$$6(\overline{J}\overline{z}) \longrightarrow -\overline{J}\overline{z}$$

$$\text{then } \exists ! \text{ field isomorphism. } s \text{-t. } G(\overline{J}\overline{z}) = -\overline{J}\overline{z}.$$

$$Q_{1}T_{2}J_{2} = \{a+b+dz \mid a, b \in Q_{2}\}.$$

 $6(a+b\sqrt{z}) = 6(a) + 6(b\sqrt{z}) = 6(a) + 6(b) \cdot 6(\sqrt{z})$
 $mignenerss = a + b \cdot 6(\sqrt{z})$

existence
$$\frac{6(\sqrt{2})^2}{T} = 6(\sqrt{2}^2) = 6(2) = 2$$

 $T^2 - 2 = 0$ $T = \sqrt{2}$ or $-\sqrt{2}$.

 $F=Q[\overline{12}]$ is defined by $f(x)=x^2-2$ $\forall x \in F$ if $x^2 - 2 = 0$. then $6(x^2-2) = 6(0)$ 612) - 2 6 has to map a root to another root. For F=QIJ21/Q, we actually prove that. Aut(F/Q) = { $id: \sqrt{2} \rightarrow \sqrt{2}$ $j \sim C_2$ cyclic qrp of $f: \sqrt{2} \rightarrow \sqrt{2}$ $j \sim C_2$ order 2. $6 \circ 6 : \overline{N2} \xrightarrow{6} - \overline{N2} \xrightarrow{6} - (-\overline{N2}) = \overline{N2}$ ${}^{e_{7}} \cdot F = Q[\overline{\sqrt{2}}] \subseteq \mathbb{R}$. $Q[\overline{\sqrt{2}}] \simeq Q[x] / (x^{3} - 2)$ Ant(F/Gg) = ? $QI_{12}^{3} = \{a + b_{12}^{3} + c_{14}^{3} + a_{16}^{6}, c \in \mathbb{Q}\}.$ If 6 fixes Q. then $6(a+b\sqrt{12}+c(\sqrt{12})^2) = a+b6(\sqrt{12})+c.6(\sqrt{12})^2$ The value of G(12) completely pin down the value of 6 (any field element)

Suppose "k/Q is Galois. 2)
$$k = Q[x] \quad x \in C$$

 $k = Q[x]$
 $\begin{bmatrix} 1, x, x^{2}, \dots, x^{k} \end{bmatrix}$ is.
 $\exists smallest k.s.t. linearly dependent.$
 $this \quad \sum a_{i} \cdot x^{i} = 0 \quad gines a$
 $f(x) = \quad \sum a_{i} x^{i}$
 $irreducible \quad in \quad Q[x].$
Then $Q[x] = [a_{0}:1 + a_{i}x + \dots + a_{k-1}x^{k-1}] \quad a_{i} \in Q].$

 $|\operatorname{Aut}(K/Q)| = K.$

Ex: 1). fix) ∈ Q i×J is irreducible, then fix) has no double roots. f(x), f(x) has common roots. Check mid check mid , ecom
2) For each specification of x, G_i(x) = x;,
6; really extend to a field isomorphism.

Det: (Galvis Grp). If K/Q is a Galvis extansion, then Gal(K/Q):= Aut(K/Q) is called the Galvis grp.

Lemma (Primitive Element Thm) Every finite extension over Q
(an be written as QIXI for a vort
$$\propto of$$
 an inveducible
polynowial fix ($\in QIXI$. $deg(f) = I QIXI$: QI .
Park: does not require ext to be Gabis.
Check hw. QITZ + $\overline{dSI} = QI \overline{dZ}$, \overline{dSI} .
Thus. If K/Q is Gabis, then
 $|Gud(K/QX)| = [K: Q]$.