Gabis Theory.

Motivation: How to solve a polynomial equation?

$$
\begin{aligned}
& n=2 \\
& f(x)=a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=3 \quad(1500+) \\
& f(x)=a x^{3}+b x^{2}+c x+d=0 \\
& \Delta_{0}=b^{2}-3 a c \\
& \Delta_{1}=2 b^{3}-9 a b c+27 a^{2} d \\
& c=\sqrt[3]{\frac{\Delta_{1} \pm \sqrt{\Delta_{1}^{2}-4 \Delta_{0}^{3}}}{2}} \\
& r_{k}=-\frac{1}{3 a} \cdot\left(b+c \cdot \xi^{k}+\frac{\Delta_{0}}{\xi^{k} \cdot c}\right) \\
& k=0,1,2 \quad \xi=\xi_{3} . \\
& n=4 \quad f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e=0 \quad(1500+)
\end{aligned}
$$

Q: Can you still find a formula for a generic quartic polynomial? (Ask google/wiki).

Ans: Yes.

$$
n=5 . \quad f(x)=\sum_{n \leq 5} a_{n} x^{n}
$$

Galois $(n \geqslant 5)$: Ansi No.
Such a formula does not exist for $n>4$. ($1800+$)

Def (F-automorphism of K) Given a field extension K / F,
 is a gyp. 6 is $F^{\text {P }}$-antolomorphism of K
eg. $\mathbb{F}_{q} \quad\left\{6: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \sigma\right.$ is a ring isomorphism $\}$ forms a $\mathbb{F}_{p} \quad$ gre under composition.

$$
1 \rightarrow 1 \quad \pi_{p} \xrightarrow{i d} \bar{\pi}_{p}
$$

of. $\theta[\sqrt{2}]$
$Q \xrightarrow{i d} \mathbb{Q}$
$\int_{\mathbb{Q}}$ Wadis $\left.6: Q[\sqrt{2}] \rightarrow \mathbb{Q} \rightarrow \sqrt{2}\right]$
6 has to fix © element-wisely.
$6: \mathbb{Q}[\sqrt{2}] \longrightarrow \mathbb{Q}[\sqrt{2}]$

$$
\sigma(\sqrt{2}) \longrightarrow-\sqrt{2}
$$

then \exists ! field isomorphism. set. $\sigma(\sqrt{2})=-\sqrt{2}$.

$$
\left.\begin{array}{l}
a[\sqrt{2}]=\{a+b \sqrt{2}(a, b \in a\} . \\
\rightarrow 6(a+b \sqrt{2})=6(a)+6(b \sqrt{2})
\end{array}=6(a)+6(b) \cdot 6(\sqrt{2})\right)
$$

$$
\begin{gathered}
\text { existence } \rightarrow \frac{6(\sqrt{2})^{2}}{T}=6\left(\sqrt{2}^{2}\right)=6(2)=2 \\
T^{2}-2=0 \quad T=\sqrt{2} \text { or }-\sqrt{2} .
\end{gathered}
$$

$F=Q[\sqrt{2}]$ is defined by $f(x)=x^{2}-2$
$\forall \alpha \in F$ if $\alpha^{2}-2=0$. then

$$
\begin{aligned}
& 6\left(\alpha^{2}-2\right)=6(0) \\
& 6(\alpha)^{11}-2
\end{aligned}
$$

6 has to map a root to archer root.
For $F=Q I \sqrt{2} I / Q$, we actually prove that.
$\operatorname{Ant}(F / a)=\left\{\begin{array}{c}i d: \sqrt{2} \rightarrow \sqrt{2} \\ 6: \sqrt{2} \rightarrow-\sqrt{2}\end{array}\right\} \simeq C_{2} \leqslant \begin{gathered}\text { cyclic gop of } \\ \text { order }\end{gathered}$ order 2.

606 $: \sqrt{2} \xrightarrow{6}-\sqrt{2} \xrightarrow{6}-(-\sqrt{2})=\sqrt{2}$
eg.

$$
F=Q[\sqrt[3]{2}] \subseteq \mathbb{R} . \quad Q[\sqrt[3]{2}] \simeq Q[x] /<x^{3}-2>
$$

$\left.\left.\right|_{\text {(1) }} 3\right)^{\text {not Galois }}$

$$
\operatorname{Ant}(F / G)=?
$$

$$
Q[\sqrt[3]{2}]=\left\{a+b^{3} \sqrt{2}+c^{3} \sqrt{4} \mid a, b, c \in \mathbb{Q}\right\} .
$$

If 6 fixes (1). then

$$
6\left(a+b^{3} \sqrt{2}+c(\sqrt[3]{2})^{2}\right)=a+b 6(\sqrt[3]{2})+c \cdot 6(\sqrt[3]{2})^{2}
$$

The value of $6(\sqrt[3]{2})$ completely pin down the value of 6 (any field element)

Where can I map $\sqrt[3]{2}$ to?
$\sqrt[3]{2}$ is root $x^{3}-2=0$

$$
\begin{aligned}
& 6\left((\sqrt[3]{2})^{3}-2\right)=6(0)=0 \\
& \frac{6(\sqrt[3]{2})]^{11}}{T}-2 \\
& (T-\sqrt[3]{2}) \cdot\left(T-\sqrt[3]{2} \cdot \xi_{3}\right) \cdot\left(T-\sqrt[3]{r_{1}} \cdot \xi_{3}^{3}\right) \\
& r_{1}^{3}=0
\end{aligned}
$$

So we have at most 3 choices for $6(\sqrt[3]{2})$ if $\sigma(\sqrt[3]{2})=\sqrt[3]{2} \quad$ this induces identity on $F \xrightarrow{i d} F$.

$$
\sigma(\sqrt[3]{2}) \stackrel{?}{=} \sqrt[3]{2} \cdot \xi_{3} \underset{\notin}{\notin} F
$$

Therefore $6(\sqrt[3]{2})=\sqrt[3]{2}$ is the only choice.

$$
\operatorname{Ant}(F / \mathbb{Q})=\{e\} .
$$

This motivate the concept of Calais extension.
Def (normal extension): A finite field extension K / F is called normal if $\forall f(x)$ irreducible in $F[x]$
$f(x)$ has a root in $k \Leftrightarrow f(x)$ has all roots in K. Rok: All finite extensions oven \mathbb{F}_{q} are Galois. (see nw 8).
Deft (Galois extension over (a)) A finite extension k over a is called Galois extension over $\mathbb{C e}$ is K / \mathbb{C} is normal.

Suppose " k /Q is Galois. 2) $k=Q[\alpha] \quad \alpha \in \mathbb{C}$

$$
k=\mathbb{Q}[\alpha]
$$

a \exists smallest k.st. linearly dependent. this $\sum a_{i} \cdot \alpha^{i}=0$ gives a

$$
f(x)=\sum a_{i} x^{i}
$$

irreducible in $Q[x]$.
Then $Q[\alpha]=\left\{a_{0} \cdot 1+a_{i} \alpha+\cdots+a_{k-1} \alpha^{k-1} \mid a_{i} \in a\right\}$

$$
a_{k} \alpha^{k}
$$

a: $\operatorname{Ant}(k / Q)=$?

$$
\begin{aligned}
& f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right) . \in k[x] \\
& f(\alpha)=\Sigma a_{i} \alpha^{i}=0 \\
& \sigma(f(\alpha))=\Sigma a_{i} \cdot \underbrace{G(\alpha)}_{T}
\end{aligned}
$$

$\sum a_{i} T^{i}=0 \quad T$ must be a root of $f(x)$.
T must be α_{i} for some i.
T has most k choices: $\alpha \rightarrow \alpha_{i}$

$$
i=1, \cdots, k .
$$

We can prove all choices \exists !
a ring isomorphism of $\sigma_{i}: k \longrightarrow k$. s.t $\sigma_{i}(\alpha)=\alpha_{i}$.
$|\operatorname{Ant}(k / \mathbb{Q})|=k$.
Ex: 1). $f(x) \in \mathbb{Q}[x]$ is irreducible, then $f(x)$ has no double roots. $\quad f^{\prime}(x), f(x)$ has common roots. check mid
2) For each specification of $\alpha, \sigma_{i}(\alpha)=\alpha_{i}$, 6_{i} really extad to a field isomorphism.

Def: (Gabics Krp). If K / Q is a Galois extension, then.

$$
\operatorname{Cal}(k / a):=\operatorname{Aut}(k / \mathbb{Q})
$$ is called the Galois gre.

Lemma (Primitive Element Thu) Every finite extensions over Q can be written as $Q[\alpha]$ for a wort α of an irredwible polynomial $f(x) \in Q[\alpha] . \operatorname{deg}(f)=[Q[\alpha]: Q]$.

Rok: does not require ext to be Galls.
Check how. $Q[\sqrt{2}+\sqrt{5}]=Q[\sqrt{2}, \sqrt{5}]$.

Thy. If K / Q is Galois, then

$$
|\operatorname{Gal}(K / Q)|=[k: Q] .
$$

