Galois Theory.

- Last time, we proved that K/Q is Galois (=> |Ant(K/Q)| = [K:Q]We are taking the definition for <u>Galois</u> to be irreducible normal extension (meaning fixs has a not in K <=> f splits in K). Rmk 1. If you read textbook, then. def for Galois is |Ant(K/Q)| = [K:Q].Rmk 2. If you read ther books. "separable" is included in the definition. (we simply drop this "separable" since

We want to show how that.
(=> K being a splitting field of a certain
polyhomial fix)
$$\in QIXI.$$

practical useful criteria to prove some field is Calois.
Thm. K/GQ is Calois (=> K is the splitting field
for some fix) $\in QIXI.$
ef: "=>" By primitive elevet thm.
ef: "=>" By primitive elevet thm.
ef: "=>" By primitive elevet thm.
Then since K/GQ is Calois, then all roots of

fix) is in K. so fix splits in K.
And since
$$K = Q_{IQI}$$
 is the minimal subfield of G
that contains x. So K is the minimal field
where fixs splits.
"C" Suppose K is the splitting field for fix) $\in Q_{IXI}$.
say fixs = $\prod_{i=1}^{m} (x - \alpha_i)$, we will prove that
[Autik/(Q)] = [K: Q] by construction.
To construct a field automorphism $G: K \rightarrow K$.
we construct by induction over $K_i = Q_{IXI, \dots, \infty}$;].
 $K_i = Q_{IXI, \dots, N} dn^2$ Firstly, we count the
muter of inclusions
 $K_i = Q_{IXI, \dots, N} dn^2$ Firstly, we count the
some inclusion $G: K \rightarrow K$.
 $K_i = Q_{IXI, \dots, N} dn^2$ Firstly, the count the
some inclusion f_i ($K_i = Q_{IXI, \dots, N}$;].
 $K_i = Q_{IXI, \dots, N} dn^2$ Firstly, the minimal
 $G_i: K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $G_i: K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$ $K_i = Q_{IXI, \dots, N} dn^2$
 $K_i = Q_{IXI, \dots, N} dn^2$

So there are deg (f,) many choices to define G.
by
$$G_1: QIX, I \xrightarrow{\sim} QIXI \xrightarrow{\sim} QIXI \xrightarrow{\sim} QIXI \xrightarrow{\sim} K.$$

where & is arbitrary root of f,1x).

Now for the next step, we consider

To define G_2 , we take $f_2(x) \in K_1[x]$, s.t. $f_2(x)$ is the minimal deg polynomial s.t. $f_2(a_1) = 0$. $f_1(x) | f(x)$ so $f_2(x)$ splits in K.

$$\begin{bmatrix} Q[\alpha_1, \alpha_2]: Q[\alpha_1]] = deg f_{2}(x) \\ = \# of roots of f_{2}(x) \\ \Rightarrow = \# of extension of 6; to$$

Ex. Civen Q[a,] = M_1 , and $f_2(x)$ incoluicble. $\in Q[a, Jk]$. denote $f'_2(x) = \Psi(f_2(x))$. then, there is an isomorphism between the field. $Q[x, J[x]] = \frac{M_1 [x]}{2} \int_{2} f_2(x) = \frac{M_1 [x]}{2} \int_{2} f_2(x) = \frac{M_2 [x]}{2}$. We have shown for each fixed G_1 , there're $\sum K_2: K, J$ extensions to G_2 . So altogether, the # of $G_1: K_2 \longrightarrow K$

is
$$[k_{2}:k_{1}] \cdot [k_{1}: @] = [k_{2}: @].$$

By induction. eventually, you will get.
$G_{n} = [K_{n}: @]$ which implies $|Ant(K/@)| = [K: @].$
So K is Galois. $\Box.$

is
$$[k_{1}:k_{1}] \cdot [k_{1}: G_{1}] = [k_{1}: G_{1}]$$
.
By induction, eventually, you will get.
 $# \quad \delta_{n} = [k_{n}: G_{1}]$ which implies $[Aut(k/G)] = [k:G_{1}]$.
So k is Galois.
Det Galois gup for a polynomial). Given $f_{1\times 3} \in G(k_{1}]$,
 $Gal(f) := Gal(K_{f}/G_{1})$
 $udice K_{f}$ is the splitting field of find out G_{1} .
 $f_{1\times 3} = (x^{2}-2)(x^{2}-3)$ $Gal(f) = C_{1}$
 $Gal(O_{1}\overline{D_{2}}]/G_{2}) = \{G: \overline{D_{1}} \rightarrow \overline{D_{2}}\}$
 $f_{1\times 3} = (x^{2}-2)(x^{2}-3)$ $Gal(f) = C_{1} \times C_{2}$.
 $= x^{4} - 7x^{2} + 10$ $= \{G: \overline{D_{2}} \rightarrow \overline{D_{2}}\}$
 $udice Say find is solvable with radicals if.$
 $the proofs of f(x) can be expirited as $t, -, x, t$ and
 $the implications of numbers.$
 $ax^{2}+bx+czo$ $x = \frac{-b \pm d^{2} - 4az}{2a}$$

We say fix, is solvable with radicals if.
the roots of fix, can be written as
$$t, -, x, \div$$
 and
successive
taking radicals of numbers.
 $a \times ^{2} + b \times + c = a$ $X = \frac{-b \pm \sqrt{b^{2} + 4ae}}{2a}$

you can still solve by radicals. $f(x) = (x^2 - 2) (x^2 - 5) (x^2 - 3)$

But quericully, if you write about a random fix
$$j \in Q.D.$$

with degree $n \ge 5$. then, fix is not solvable with radials.
Thm. If fix, is irreducible in $Q.D.E.D.$ degression $f(x) = n$.
then
Cull $K_f / Q.D \subseteq Sn$.
Pf. Factor $f(x) = \frac{fT}{12}(X - \alpha_i)$ and $K_{g,2} = Q.D.M., \dots, \alpha_n D$.
 $G: K_f \rightarrow K_f$ induces a permutation of α_i 's.
and, we define $\pi_G \in Sn$. $\pi_G(D) = j$ if $f(\alpha_i) = \alpha_j$.
Since $K = Q.D.M., \dots, \alpha_n D$ so if $G(\alpha_i) = \alpha_i$ for all i.
then $G = id$ antomorphism. Therefore $Gal(K_f / Q) \in Sn$.
 $Q.$
Runk. (Interesting Fact : a random fix, then $Gal(f) = Sn$.).
Thm. If fix is solvable by radicals, then K_f / Q
has a solvable Gabis grp.
recuil G is solvable iff $e \in G. \in \dots \in Gn = G - G'_{Gin}$ is
abdian.
pf: Kn Ie3
 K_n Gan $Suppose fix$ is solvable with radicals.
 K_n Gan K_n for all is solvable of M_{G} is solvable with radicals.
 K_n Gan K_n K_n

.

then
$$k_0 = Q[I_{h_1}^{k}, Ja] = splitting field of $f_{2}(x) = x^{k} - a$ accor
Callis
ent over $\begin{pmatrix} k_1 = Q[I_{h_1}] \\ k_2 = Q[I_{h_2}] \end{pmatrix}$ is abelian since.
 $\begin{cases} all Q[I_{h_2}]/Q \end{pmatrix}$ is $abelian d integers now k for
 $\vdots e_{1} = T_{1} = T_{$$$$

has solvable quotient, so. Gall
$$k_f/Q$$
, is solvable.
 $\sqrt{1 - \sqrt{2}}$
 $\sqrt{1 - \sqrt{2}}$
 $will note$
be Galois
 $0I\sqrt{1 - \sqrt{2}} = F$ find the
 $ver Q$

Rmk. 1) Gabis entension over Galois extension is not necessarily Galois;

2) abdian extansion over abelian extension is always solvable (after taking the Galois closure. over Q. equivalenty splitting field over Q.).

Start 1:30 pm - End 5:30 pm

(abc) 6H=H6 6T6= (6(a) 6(b) 6(c)) 7