Galois Theory.
Last time, we proved that
k / \mathbb{Q} is Galois $\Leftrightarrow|A n t(k / \mathbb{Q})|=[k: \mathbb{Q}]$

We are taking the definition for Galois to be normal extension (meaning irredmible $f(x)$ has a root in $k \Leftrightarrow f$ splits in k). Rok 1. If you read textbook, then. def for Cullis is

$$
|\operatorname{Ant}(k / \mathbb{Q})|=[k: \mathbb{Q}] .
$$

Rok 2. If you read oTher books. "separable" is inched in the definition. (we simply drop this "separable" since all fid extensions we talk about, L/F with char 0 . or finite eats over \mathbb{F}_{p} or \mathbb{F}_{q}).

We want to show non that.
$\Leftrightarrow K$ being a splitting fill of a certain polynomial $f(x) \in \mathbb{Q}[x]$.
practical useful criteria to prove some field is Calls.
Thu. K/Ge is Gals's $\Leftrightarrow K$ is the splitty fidel for some $f(x) \in Q\left[x_{-}\right]$
pf. " $=$ P' $^{\prime}$ By primitive elaet than.
$K=Q[\alpha]$ then. say $f(x)$ is the nimimal degree poly in $a_{0}\left[x_{-}\right]$s.t. $f(\alpha)=0$.
Then since K / \mathbb{Q} is Galois, then all roots of
$f(x)$ is in K. so $f(x)$ splits in K.
And since $K=\mathbb{Q}[\alpha]$ is the minimal subfield of \mathbb{C} that contains α. So k is the cininimal fidel where $f(x)$ splits.
$" \Leftarrow "$ Suppose K is the splitting field for $f(x) \in \mathbb{Q} Z \times]$. say $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, we will prove that
$\mid \operatorname{Ant}(K /(Q) \mid=[K: Q]$ by construction.
To construct a fire automorphism $6: K \longrightarrow K$. we construct by induction over $k_{i}=Q\left[\alpha_{1}, \cdots, \alpha_{i}\right]$.
$k=Q\left[\alpha_{1}, \cdots, \alpha_{n}\right] \quad$ Firstly, we cont the k_{i}

$$
k_{2}=Q\left[\alpha_{1}, \alpha_{2}\right]
$$

number of inclusions

$$
k_{1}=Q\left[\alpha_{1}\right] \quad Q\left[\alpha_{k}\right]
$$

$\sigma_{1}: K_{1}=C l[\alpha, 1 \longrightarrow K$.
(1). α_{k} ad α_{1}
shares the same irreducible poly
eg. $Q[\sqrt[3]{2}] \subseteq Q\left[\sqrt[3]{2}, y_{3}\right]$
$\mid 2$
$Q\left[\sqrt[3]{2} \xi_{3}\right]$
13
0

So there are $\operatorname{deg}\left(f_{1}\right)$ many choices to define G_{1}. by $\quad \sigma_{1}: Q[\alpha,] \xrightarrow{\sim} Q_{\left(f_{1}(x)>\right.} \underset{\Gamma}{\sim} Q_{[\alpha]}^{[\alpha]} \longleftrightarrow K$. where α is arbitrary root of $f_{1}(x)$.

Now for the next step, we consider

To define σ_{2}, we take $f_{2}(x) \in K_{1}[x]$, sit. $f_{2}(x)$ is the minimal dey polynomial s.t. $\quad f_{2}\left(\alpha_{2}\right)=0$.
$f_{2}(x) \mid f(x)$ so $f_{2}(x)$ splits in k.

$$
\begin{aligned}
{\left[Q\left[\alpha_{1}, \alpha_{2}\right]: Q[\alpha,]\right] } & =\text { dey } f_{2}(x) \\
& =\# \text { of roots of } f_{2}(x)
\end{aligned}
$$

$\lambda=\#$ of extension of σ_{1} to dense $f_{2}^{\prime}(x)=\varphi\left(f_{2}(x)\right)$. then. there is an isomorphism between the field. $\left.Q[\alpha],[x] /\left\langle f_{2}(x)\right\rangle \simeq M,[x] / \angle f_{2}^{\prime}(x)\right\rangle$.
We have shown for each fixed σ_{1}, there've $\left[k_{2}: k,\right]$ extensions to σ_{2}. So altogether, the \# of $\sigma_{2}: K_{2} \longleftrightarrow k$
is $\left[k_{2}: k_{1}\right] \cdot\left[k_{1}: G\right]=\left[k_{2}: \mathbb{Q}\right]$.
By induction. eventually, you will get.
\# $\sigma_{n}=\left[K_{n}: \mathbb{Q}\right]$ which implies $|\operatorname{Ant}(K / \mathbb{Q})|=[K: Q$.$] .$
So K is Galois.

Application.
Def(Galois up for a polynomial). Given $f(2 x) \in \mathbb{Q}[x]$,

$$
\operatorname{Gal}(f):=\operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)
$$

where K_{f} is the splitting field of $f(x)$ suer \mathbb{a}.
eg.

$$
\begin{aligned}
& f(x)=x^{2}-2 . \quad G a l(f)=C_{2} \\
& \text { Gall } Q[\sqrt{2}] / \mathbb{C})=\left\{6: \sqrt{2} \rightarrow\left\{\begin{array}{c}
-\sqrt{2} \\
\sqrt{2}
\end{array}\right\}\right. \\
& f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right) \quad G \operatorname{Gal}(f)=C_{2} x C_{2} . \\
& =x^{4}-7 x^{2}+10 \quad \simeq\left\{\begin{aligned}
6: \sqrt{2} & \rightarrow \pm \sqrt{2} \\
\sqrt{5} & \rightarrow \pm \sqrt{5}
\end{aligned}\right\}^{k} \\
& \text { and } \sigma^{2}=i d . \quad \forall \sigma \in \operatorname{Cal}(f) \text {. }
\end{aligned}
$$

We say $f(x)$ is solvable with radicals if. the roots of $f(x)$ can be written as $t,-, x, \div$ and taking successive

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$f(x)=\left(x^{2}-2\right)\left(x^{2}-5\right)\left(x^{2}-3\right)$ you can still solve by radicals

But generically, if you write down a random $f(x) \in Q[*]$. with degree $n \geqslant 5$. then. $f(x)$ is not solvable with radicals.

Thu. If $f(x)$ is irreducible in $G[x]$. dey $(f)=n$.
then
$\operatorname{Call}\left(K_{f} / \mathbb{Q}\right) \subseteq S_{n}$.
Pf. Factor $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ and $k_{f}=Q\left[\alpha_{1}, \cdots, \alpha_{n}\right]$.
6: $K_{f} \rightarrow K_{f}$ induces a permutation of $\alpha_{\text {is }}$. and. we define. $\pi_{\sigma} \in S_{n} . \quad \pi_{6}(i)=j$ if $\sigma\left(\alpha_{i}\right)=\alpha_{j}$.

Since $K=Q\left[\alpha_{1}, \cdots, \alpha_{n}\right]$ so if $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ for all is then $\sigma=$ id automorphism. Therefore $G_{\text {all }}\left(K_{f} /(\otimes) \subseteq S_{n}\right.$.

Rok. (Interesting Fact: a random $f(x)$, then Gal(f) $=S_{n}$.).
Thy. If $f(x)$ is solvable by radicals, then k_{f} / \mathbb{Q} has a solvable Gals gre.
recall G is solvable iff $e \subseteq G_{1} \subseteq \cdots \subseteq G_{n}=G \cdot G_{i} / G_{i-1}$ is abelian.
Pf:

By fudaretal the for Calais theory. we have a correspondence between sufields \& subgrps.
Suppose $f(x)$ is solvable with radicals. say $\sqrt[k]{a}$ where $a \in \mathbb{Q}$ appear in the expression of rots.
then $\quad k_{2}=Q\left[\xi_{k}, \sqrt[k]{a}\right] \leftarrow$ splitting field of $f_{2}(x)=x^{k}-a \quad a \in \mathbb{Q}$

Galois ext over
a
仅

splitting field of $f_{1}(x)=x^{k}-1$

Gal（ $\left.Q\left[\xi_{k}\right] / Q\right)$ is abelian since．
$\left\{\sigma_{i}: \xi_{k} \rightarrow \xi_{k}^{i}\right\} \quad \sim$ notice not all integers work for

$$
\begin{aligned}
& \text { i. eg. } \begin{array}{cccc}
\xi_{4} & \text { 他 } & \xi_{4}^{2} \\
& i & & -1 \\
& & -1
\end{array} \\
& \sigma_{i} \circ \sigma_{j}=\sigma_{j} \circ \sigma_{i}: \xi_{k} \rightarrow \xi_{k}^{i \cdot j} \\
& \text { Gal(} Q\left[\xi_{k}, \sqrt{k} \sqrt{a} \beth / Q\left[\xi_{k} I\right)=\left\{\tau_{i}: \sqrt[k]{a} \rightarrow \sqrt[k]{a} \cdot \xi_{k}^{i}\right\}\right. \text {. } \\
& \tau_{i} \circ \tau_{j}=\tau_{j} \circ \tau_{i}: \sqrt[k]{a} \rightarrow \sqrt{a} \cdot \xi_{k}^{i j}
\end{aligned}
$$

So we get $C_{a}\left(Q\left[\xi_{k}, \sqrt{N} I I / Q\right)\right.$ is solvable．
Inductively taking all the roots in the expression．then． we can get a sequence of field

$$
\theta \subseteq k_{1} \subseteq k_{2} \subseteq \cdots \quad \subseteq k_{n}
$$

that all K_{i} are Galois by construction．

$$
G \geq G_{1} \geq G_{2} \supseteq \cdots \cdot \quad \supseteq\{e\} .
$$

where G_{i} / G_{i+1} is abelian．
Notice that．$f(x)$ splits in K_{n} via construction so K_{f} is a quotient of K_{n} ，and solvable opp
has solvable quotient, so. Gale K_{f} / al ${ }^{\text {, is solvable. }}$

Rmk.1) Galois extension over Galois extension is not necessarily Galois;
2) abelian extension over arelian extension is always solvable (after taking the Galois closure. over Q. equivalently splitting field over (al).

Core. $f(x)$ with deg $\geqslant 5$ is not always solvable with radicals. because S_{n} is not solvable when $n \geqslant 5$.

Start 1:30 pm End 5:30 pm

$$
\begin{aligned}
& (a b c) \\
& 6 H=H 6 \\
& \sigma^{\prime \prime} \tau \sigma^{-1}=\left(\begin{array}{lll}
\sigma(a) & \sigma(b) & \sigma(c)
\end{array}\right)
\end{aligned}
$$

\uparrow

