Homework 1, Math 401

due on Feb 1, 2021

Before you start, please read the syllabus carefully

1. For the following sets with the specified binary operation, do they form a group? Prove or disprove.
(a) S : the set of continuous function over $[0,1]$ with $f(0)=f(1)=0$
f : function multiplication
(b) $S: \mathbb{R}^{3}$
$f: x \cdot f y=x-y$
(c) $S: \mathbb{Q} \backslash\{1\}$
$f: x \cdot f y=x+y-x \cdot y$ (where + and \cdot are usual addition and multiplication for rational numbers)
(d) S : the set of orthogonal matrices in $\mathrm{GL}_{2}(\mathbb{R})$ (Orthogonal matrix is a matrix where $\left.A \cdot A^{T}=I\right)$
f : matrix multiplication
2. Given a set S, a relation \sim is a subset of $R \subset S \times S$, i.e., $a \sim b$ if and only if $(a, b) \in R$. A relation \sim is called an equivalence relation if:
(a) (reflexivity) $a \sim a$ for any $a \in S$
(b) (symmetry) $a \sim b$ if and only if $b \sim a$
(c) (transitivity) $a \sim b$ and $b \sim c$ imply $a \sim c$.

Prove that when S is the set of all groups, the relation $G_{1} \sim G_{2}$ if and only if G_{1} is isomorphic to G_{2} is an equivalence relation.
3. Prove that the two groups $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic to each other.
4. Let G be a group, if $a \cdot b=a \cdot c$ or $b \cdot a=c \cdot a$, then $b=c$. (This is called the cancellation law for group).
5. For the group $C_{n}=(\{0,1, \cdots, n-1\},+\bmod n)$, prove that the following statement are equivalent for $k \in C_{n}$:
(a) k is a generator for C_{n}
(b) $\operatorname{ord}(k)=n$.
(c) The integer k is relatively prime to n.
6. Prove that every subgroup of a finite cyclic group is still cyclic.
(Hint: if d is the greatest common divisor of a and b, then there exist integers m and n such that $a m-b n=d$.)
7. Prove that if H_{1} and H_{2} are both subgroups of G, then $H_{1} \cap H_{2}$ is also a subgroup of G. (Remark: This easy fact is assumed when we define generation since we need to be clear what do we mean by the smallest subgroup containing S).
8. (a) Let S be a nonempty subset of a group G. Prove that

$$
\langle S\rangle=\left\{g_{1}^{r_{1}} g_{2}^{r_{2}} \cdots g_{n}^{r_{n}} \mid g_{1}, \cdots, g_{n} \in S, r_{1}, \cdots, r_{n}= \pm 1, n \geq 1\right\}
$$

(b) Denote $\sigma=\left(\begin{array}{cc}-1 / 2 & \sqrt{3} / 2 \\ -\sqrt{3} / 2 & -1 / 2\end{array}\right)$ and $\tau=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. Prove that $\sigma^{3}=I, \tau^{2}=I$ and $\tau \sigma=\sigma^{2} \tau$, and then using the three equalities to prove that

$$
\langle\sigma, \tau\rangle=\left\{\sigma^{i} \tau^{j} \mid 0 \leq i<3,0 \leq j<2\right\} .
$$

