Homework 1, Math 401

due on Feb 1, 2021

Before you start, please read the syllabus carefully.

- 1. For the following sets with the specified binary operation, do they form a group? Prove or disprove.
 - (a) S: the set of continuous function over [0, 1] with f(0) = f(1) = 0f: function multiplication
 - (b) $S : \mathbb{R}^3$ $f : x \cdot_f y = x - y$
 - (c) $S : \mathbb{Q} \setminus \{1\}$ $f : x \cdot_f y = x + y - x \cdot y$ (where + and \cdot are usual addition and multiplication for rational numbers)
 - (d) S : the set of orthogonal matrices in $\operatorname{GL}_2(\mathbb{R})$ (Orthogonal matrix is a matrix where $A \cdot A^T = I$)
 - f: matrix multiplication
- 2. Given a set S, a relation ~ is a subset of $R \subset S \times S$, i.e., $a \sim b$ if and only if $(a, b) \in R$. A relation ~ is called an *equivalence relation* if:
 - (a) (reflexivity) $a \sim a$ for any $a \in S$
 - (b) (symmetry) $a \sim b$ if and only if $b \sim a$
 - (c) (transitivity) $a \sim b$ and $b \sim c$ imply $a \sim c$.

Prove that when S is the set of all groups, the relation $G_1 \sim G_2$ if and only if G_1 is isomorphic to G_2 is an equivalence relation.

- 3. Prove that the two groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic to each other.
- 4. Let G be a group, if $a \cdot b = a \cdot c$ or $b \cdot a = c \cdot a$, then b = c. (This is called the cancellation law for group).
- 5. For the group $C_n = (\{0, 1, \dots, n-1\}, + \mod n)$, prove that the following statement are equivalent for $k \in C_n$:
 - (a) k is a generator for C_n
 - (b) ord(k) = n.
 - (c) The integer k is relatively prime to n.

- 6. Prove that every subgroup of a finite cyclic group is still cyclic. (Hint: if d is the greatest common divisor of a and b, then there exist integers m and n such that am - bn = d.)
- 7. Prove that if H_1 and H_2 are both subgroups of G, then $H_1 \cap H_2$ is also a subgroup of G. (Remark: This easy fact is assumed when we define *generation* since we need to be clear what do we mean by the smallest subgroup containing S).
- 8. (a) Let S be a nonempty subset of a group G. Prove that

$$\langle S \rangle = \{ g_1^{r_1} g_2^{r_2} \cdots g_n^{r_n} \mid g_1, \cdots, g_n \in S, r_1, \cdots, r_n = \pm 1, n \ge 1 \}.$$

(b) Denote $\sigma = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$ and $\tau = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Prove that $\sigma^3 = I$, $\tau^2 = I$ and $\tau \sigma = \sigma^2 \tau$, and then using the three equalities to prove that

$$\langle \sigma, \tau \rangle = \{ \sigma^i \tau^j \mid 0 \le i < 3, 0 \le j < 2 \}.$$