Homework 10, Math 401

due on April 14, 2021

Before you start, please read the syllabus carefully.

- 1. Let K be a finite degree extension of \mathbb{Q} with $\operatorname{Aut}(K/\mathbb{Q}) = [K : \mathbb{Q}] = n$. Let $\alpha \in K$ and $\alpha_i = \sigma_i(\alpha)$ where $\operatorname{Aut}(K/\mathbb{Q}) = \{\sigma_i \mid 1 \leq i \leq n\}$. Denote $X = \{\alpha_i\}$.
 - (a) Prove that $\operatorname{Aut}(K/\mathbb{Q}) \times X \to X : (\sigma, \alpha_i) = \sigma(\alpha_i)$ gives a group action on X.
 - (b) Using the expression $f(x) = \prod_{1 \le i \le n} (x \alpha_i)$ to determine the coefficient a_j of x^j in f(x) for $0 \le j \le n$.
 - (c) Denote $a_j(\alpha_1, \dots, \alpha_n)$ to be a *n*-variable polynomial. Prove that $a_j(\alpha_1, \dots, \alpha_n) = a_j(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)})$ for any $\sigma \in S_n$.
 - (d) For any $\sigma \in \operatorname{Aut}(K/\mathbb{Q})$ and $a_j(\alpha_1, \dots, \alpha_n) \in K$ for $0 \leq j \leq n$, prove that

$$\sigma(a_i(\alpha_1, \cdots, \alpha_n)) = a_i(\sigma(\alpha_1), \cdots, \sigma(\alpha_n)).$$

- (e) Prove that $f(x) \in \mathbb{Q}[x]$.
- 2. Consider $K = \mathbb{F}_{25}$.
 - (a) Prove that $K \simeq \mathbb{F}_5[x]/\langle x^2 + 2x + 3 \rangle$.
 - (b) Let α be a root of $x^2 + 2x + 3$. Write down every element in \mathbb{F}_{25} in terms of α and elements in \mathbb{F}_5 .
 - (c) Write down the two roots of $x^2 2$ in terms of α and elements in \mathbb{F}_5 .
- 3. Prove that $Gal(\mathbb{Q}[2^{1/3}, \mu_3]/\mathbb{Q}) = S_3$.
- 4. Let $f(x) = x^8 1 \in \mathbb{Q}[x]$.
 - (a) Determine the splitting field K of f(x).
 - (b) Determine the degree $[K : \mathbb{Q}]$.
 - (c) Determine all elements in $\operatorname{Aut}(K/\mathbb{Q})$ as ring homomorphisms.
 - (d) Let $\alpha = \mu_8 + \mu_8^{-1}$ where $\mu_8 = e^{2\pi i/8}$. Determine $\sigma(\alpha)$ for every $\sigma \in \text{Aut}(K//Q)$.
 - (e) Determine the finite group $Gal(K/\mathbb{Q})$.
- 5. (a) Determine the intermediate fields M_i with $\mathbb{Q}[2^{1/3}, \mu_3] \supset M \supset \mathbb{Q}$ and $Gal(\mathbb{Q}[2^{1/3}, \mu_3]/M_i)$.
 - (b) Determine the intermediate fields M_i between $K \supset M \supset \mathbb{Q}$ where K is the splitting field of $x^8 1$ and $\operatorname{Gal}(K/M_i)$.